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“Extending smart city and community systems to leverage the advantages of mobile computing”
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Goals and Overview Scenarios and Testbeds

Communities and cities are interested in Internet of Things
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A flexible approach to address these issues is demanded!

Victory Court Senior Apart- On UCIl campus where we also In emergencies (e.g. fire), we

Mobile devices are popular, with various sensors and net- ments is a senior people’s home ghave a SCALE deployment, we hope collect relevant data, but

SCALECycle prototype on bike An open SCALE sensor box SCALECycle system architecture

work capabilities. It is promising to leverage these capabili- in Montgomery County, MD. §wou|d like to create heat-maps infrastructures are often dam-
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1.Scalability of system architecture ! ’OQ-O ing at extending this system for .« Campus Wi-Fiis available but | gas) only useful in such events | .. " | Courthouse) . Bluetooth GPS and terminal
. air quality. . coverage is non uniform S : i ¥ & S == 9

2.Dynamics in network availability and environment é I@ 5 .« Collecting info and leveraging r d Software

- Only Internet infrastructure is i, yse of available knowledge : the working infrastructure .| Departmentof S y .
3.Interoperability of heterogeneous devices 8¢ & | Computer Science = EO) . Abstracted virtual sensors generate

the Wi-Fi AP in the building

'| (Donald Bren Hall)

*
s
A\ VY -
= = 8 The Licg
4 W el I
o
s e
/ J _,3-.“
University Club at Invine wason D
(A

Wi-Fi RSSI heat-maps created with SCALECycle measurements + Wi-Fi heat-mapping on two testbeds

Collaboration of heterogene- . Data exchange for isolated sensed events, that are published

via MQTT or stored in local MySQL

- Get data from outdoors dev. | oys sensing devices . communication islands

Technology Support

Measurements

Upload Planning for Mobile Data Collection

A mobile data collector (MDC) is given a path, where

Experimental Results

there are several sites to fetch data, and several ac-

cess points to upload data. Multi-timescale scheduling for crowd augmented urban sensing

Plan for each data chunk fetched from data sites, o0l o0l Heat-mapping of real-time sensor data (e.g. air quality, noise pollution) is a commonplace application
which upload opportunity to use to upload it, in or- % | % | for smart city. Crowd sensing is a mechanism that leverages the sensing capacity on personal mobile
der to improve the overall timeliness. Tos! Tos! devices to feed such applications. Due to the heterogeneous nature of the physical variables that we
Challenges: 1. Non-uniform network connectivity, % % are interested in, different types of sensor data usually have different timing (update rate) and accura-
2. Data heterogeneity (e.g. size, importance, timing), E}U-T —— First opportunity E}U-T — First opportunity cy requirements. In this work, we look at building
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] B dynamic adaptation phase (on MDC). The proposed two-phase approach performed The proposed two-phase approach also per-

Probabilistic Communication for Mobile Data Collection in loT Islands

better than both naive approach and the static formed more stable for large data chunks. For

Given an ordered list of data chunks {a;},i = 1, ..., N, with We formulated a simplified version of the : I , ,

increasing x(a;), and an ordered list of opportunities {w;},j = oad olann N o planning only approach, resulting in 14-24% ~8 MB chunks, BDOP-Lyapunov resulted in 36- In structures like smart buildings and parking lots, there is a large number of connected loT nodes. In
1, ..., M, with increasing x(w,). upload planning problem as a constraine improvement in weighted overall utility (WOU).  60% improvement in WOU. special events like emergencies, where the public infrastructure breaks down, these nodes are discon-
Find global plan 4 and its corresponding plan matrix A, to optimization problem (shown on the left). nected from the cloud and form communication islands. To facilitate data exchange among islands,

maximize the WOU subject to the cause-and-effect constraint, i.e.

N N The upload planning problem is proven 3 - and between islands and cloud, we can dispatch mobile agents to provide them with data collection or
- 12000 o 0.95 - - :
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Static planning and dynamic adaptation algorithms we proposed for the two-phase approach BDOP-Lyapunov performed stably when scenario scales up, which out-performed GA.




