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ABSTRACT
Real-time event detection and targeted decision making for emerg-
ing mission-critical applications, e.g. smart fire fighting, requires
systems that extract and process relevant data from connected IoT
devices in the environment. In this paper, we propose FireDeX,
a cross-layer middleware that facilitates timely and effective ex-
change of data for coordinating emergency response activities.
FireDeX adopts a publish-subscribe data exchange paradigm with
brokers at the network edge to manage prioritized delivery of
mission-critical data from IoT sources to relevant subscribers. It
incorporates parameters at the application, network, and middle-
ware layers into a data exchange service that accurately estimates
end-to-end performance metrics (e.g. delays, success rates). We
design an extensible queueing theoretic model that abstracts these
cross-layer interactions as a network of queues, thereby making
it amenable for rapid analysis. We propose novel algorithms that
utilize results of this analysis to tune data exchange configurations
(event priorities and dropping policies) while meeting situational
awareness requirements and resource constraints. FireDeX lever-
ages Software-Defined Networking (SDN) methodologies to enforce
these configurations in the IoT network infrastructure. We eval-
uate its performance through simulated experiments in a smart
building fire response scenario. Our results demonstrate signifi-
cant improvement to mission-critical data delivery under a variety
of conditions. Our application-aware prioritization algorithm im-
proves the value of exchanged information by 36% when compared
with no prioritization; the addition of our network-aware drop rate
policies improves this performance by 42% over priorities only and
by 94% over no prioritization.
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1 INTRODUCTION
As we move further into a future full of connected devices, the
Internet of Things (IoT) promises to revolutionize societal-scale
operations and influence our daily lives. It integrates pervasive
sensing/actuation, dynamic data analytics, and communications.
Domains such as transportation, home automation, healthcare, and
emergency response are becoming increasingly IoT-enabled; this
provides data-driven insights to improve situational awareness.
This is particularly useful in mission critical applications, e.g. to
enable effective and timely emergency response. Recent smart city
efforts such as the SmartAmerica Challenge and Global City Teams
Challenge have showcased the integration of IoT into a variety of
community settings and application domains [8, 31, 60].

A distributed data exchange solution that manages the flow of
relevant data to/from devices, systems and individuals (data pro-
ducers and consumers) is a critical centerpiece of IoT deployments.
In this paper, we adopt a publish/subscribe (pub/sub) model for
IoT data exchange based on our previous experiences with such
systems and the popular use of pub/sub (e.g. MQTT[42]) in IoT
implementations. In mission critical emergency scenarios, IoT de-
vices can forward raw sensor data to interested recipients (e.g
first responders and emergency management agencies) through a
data exchange broker to help coordinate the response effort. We
consider IoT sensors as publishers, all manner of data as events,
and interested entities (i.e. human stakeholders or other IoT de-
vices and services) as subscribers. Data exchange brokers route
information to actuators (e.g. alarms), data analytics services that
detect new events, or to a local logging database for post-incident
analysis and forensics. Key challenges arise when enabling timely
data exchange to a diverse set of recipients including: managing
heterogeneous information with varying size, format, relevance,
urgency, etc.; seamless integration of new IoT data sources with
pre-existing sources and information on the fly; supporting reliable
and timely communication over constrained networks (e.g. due to
lossy channels and failed components).
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To overcome these challenges, we propose FireDeX, an inte-
gration middleware that unifies (a) smartspace IoT data and infra-
structure (e.g. a Smart Building Management System (BMS)) with
(b) programmable network infrastructure (e.g. through Software-
Defined Networking (SDN)) and (c) domain specific applications
(e.g. smart fire fighting systems and apps brought onsite by emer-
gency responders). FireDeX aims to support timely and reliable
delivery of the most critical data to relevant subscribers despite
challenging network conditions. It utilizes the cross-layer (i.e. appli-
cation and network-aware) approach for IoT data exchange shown
in Fig. 1 and described here. It leverages edge computing (i.e. data
exchange brokers at the network edge) and SDN to bridge criti-
cal application requirements with network state. This approach
facilitates platform and device independent adaptation of IoT com-
munication at the middleware layer. Using SDN, FireDeX configures
the underlying physical network to prioritize messages according
to the requirements (i.e. subscriptions with utility functions that
quantify situational awareness) and underlying network resource
constraints (e.g. bandwidth, error). Through the use of priority
queues and carefully tuned packet drop rates (i.e. for bandwidth
allocation), it ensures timely delivery of the most important data
possible. To this end, we construct an extensible queueing theo-
retic model to abstract the cross-layer flow of data. We present
our formal analysis that our proposed novel algorithms leverage
to configure the data exchange. These algorithms manage active
subscriptions by separately assigning priorities to each and then
allocating bandwidth to them. Our simulation-based experiments
validate our model/analysis, demonstrate the FireDeX approach’s
efficacy, and compare its core algorithms with alternatives.

The FireDeX middleware combines several novel capabilities
and design features, notably the following key contributions:

• Applying a cross-layer approach (application, middleware,
networking) to prioritizingmission critical IoT data exchange
during a fire response scenario in an IoT-enhanced smart
building with SDN-enabled edge infrastructure. (§2)

• Formulating an extensible formal model of these three layers
based on the unified framework of queueing theory. This
model includes our new multi-class priority queueing model.
We use it here to represent an SDN switch, but it is generally
suitable for use in other queueing networks. (§3)

• Leveraging the above queueing model to explore the config-
uration parameter space and derive novel algorithms that
prioritize IoT events and tune notification delivery/delay.
FireDeX leverages SDN to configure the underlying physi-
cal network with priority queueing disciplines and carefully
tuned packet drop rates (i.e. for bandwidth allocation). (§4)

2 THE FIREDEX APPROACH
To motivate the need for prioritized IoT data exchange, the chal-
lenges involved, and our proposed approach, we begin with an
IoT-enhanced structural fire scenario.

2.1 A Driving Scenario: Fire Fighting with IoT
During a fire, an occupant or automated system activates an emer-
gency dispatch process. A local fire department(s) responds by
sending a team of fire fighters (FFs). An Incident Commander (IC)

Figure 1: The FireDeX cross-layer middleware.

coordinates the effort from an Incident Command Post (ICP) set up
onsite. To effectively manage the dynamic response and minimize
casualties, injuries, and property damage, the IC requires up-to-date
situational awareness information. Today the IC still derives much
of this information from non-digital sources (e.g. human-initiated
reports via voice and/or FF radio, paper records) and collates it
in an ad-hoc manner to guide operations. However, smartspaces
equipped with IoT devices enable access to live data feeds that
can generate actionable information in real-time through proper
filtering, prioritizing, and analysis. Such a data-driven approach to
improving FF outcomes fuses sensor data producers with consumers
(e.g. analytics) and actions (e.g. device actuations, alerts). This im-
proves the efficacy of the classical fire response workflow, thereby
driving the emergence of Smart Fire Fighting (SFF) technologies.

In 2015, the US National Institute of Standards and Technology
(NIST) and National Fire Protection Association (NFPA) published
the Research Roadmap for Smart Fire Fighting (Res. Roadmap) [28]
that “establishes the scientific and technical basis” of SFF. This
interdisciplinary collaboration brought together members of indus-
try, government, the fire science practice, and academia to identify
technologies and key challenges in SFF.

Maintaining up-to-date situational awareness for SFF requires
the integration and enrichment of static and dynamic data from
buildings and IoT infrastructure. Static information such as building
floor plans, inspection histories, and presence of hazardous material
can be gathered apriori. Dynamic information published by IoT
devices (in the building and brought by FFs) must be delivered to
relevant subscribers (e.g. analytics services) and combined with
contextual knowledge to generate situational awareness. Different
data types vary in importance to responders depending on the
situation (e.g. “smoke” > “water pressure” when initially sizing up
the event and vice versa during active fire suppression).

Stakeholders (e.g. IC, FFs, residents) request data and visualize
it using e.g. dashboards, heads-up displays, mobile alerts. The IC
assesses building occupancy for coordinating evacuations, tracks
the locations and biometrics of FFs to ensure their safety and effec-
tiveness, and detects environmental hazards within the building
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such as high temperature or smoke levels. A key challenge for SFF is
delivering mission-critical data for “timely, targeted decision mak-
ing” in an unreliable, partially available, and congested network
environment [28]. Given the heterogeneous value of events and
limited resources for delivering notifications, we believe event pri-
oritization is necessary in such mission-critical settings. To this end,
we propose the FireDeX data exchange middleware to manage the
flow of situational awareness information. It assigns and enforces
event priorities according to the requirements and capabilities of
three middleware layers: application, data exchange, network.

2.2 Background on IoT Data Exchange
Several research challenges for mission-critical IoT data exchange
arise from the above driving SFF scenario.

Heterogeneity of devices and information: Heterogeneous
IoT devices in buildings/structures (e.g. sensors, cameras) produce
data that varies in size, frequency (periodic samples vs. asynchro-
nous alerts), type, and importance to individual subscribers [6,
47, 62, 63]. In existing structures, this complexity is handled by a
BMS that locally manages devices and data. Recent work on smart
buildings includes ontologies [4] and protocols to support build-
ing automation [17], techniques to preserve privacy [40], enabling
energy efficiency [58], programmable building operating system
services [19], context aware IoT management via SDN [33], and
accurate positioning for location based apps [18].

To manage both scale and heterogeneity, we design FireDeX
as an edge middleware that leverages existing IoT infrastructure
and services managed by a third-party BMS. Its pub/sub approach
integrates capabilities of new devices/tools brought on scene by
responders, while separating operational and ownership concerns.
Note that external entities often lack the knowledge, access, and
expertise to reconfigure local devices. This might conflict with
existing configurations customized by building IoT administrators.

Managing smart spaces at scale in real time: Tuning data
collection parameters at each device (e.g sampling rate, resolu-
tion) for individual subscribers is not always viable, especially as
the number and diversity of devices scales. FireDeX’s edge broker
approach naturally supports scalability; geographically-dispersed
subscribers interconnect through a distributed network of data
exchange brokers. This network may be hierarchical: top-level bro-
kers running in cloud data centers serve a large region with many
local brokers running in edge data centers to serve a smaller local
area (e.g. one or a few buildings, a campus). FireDeX can leverage
work in large-scale pub/sub systems [7, 47, 63] as well as research
into managing data exchange configurations according to data pro-
cessing workload characteristics [38, 55]. Other related research
proposes similar centralized control of IoT data exchange [32, 61].

Managing unreliable IoT networks: Communications are of-
ten constrained in crisis scenarios. FireDeX leverages SDN to man-
age networking for IoT deployments by offloading network config-
uration tasks from constrained devices and network hardware.

SDN APIs (e.g. OpenFlow [39], P4 [13]) provide a unified view
of and control over the underlying network infrastructure. An SDN
controller (e.g. ONOS [10]) observes the underlying network by
querying switches for various statistics e.g. packets sent/received,
loss rates, etc. SDN provides a variety of abstractions to represent

the underlying physical network. These include authorized access
to directly manage physical switches, control over virtual (software-
based) switches [43] (e.g. running alongside the broker), network
virtualization [12] to reserve “slices” of the physical infrastructure,
etc. Recent research into SDN-enabled 5G cellular architectures [54]
supports the potential for such interfaces that connect emergency
responder devices to the building’s internal network.

SDN-based approaches have been used in general IoT networks
to: configure QoS-enabled routing [36, 45]; differentiate pub/sub
subscriptions at the network level and prioritize them separately
to provide bounded queueing delays [57]; manage wireless IoT
sensor networks [21]; for meet real-time data flow processing delays
through prioritization [3]. Recent research [9, 11, 53] used SDN to
enable high performance pub/sub through network-level multicast.
FireDeX’s extensible design can easily integrate such techniques.

Research on Network Utility Maximization (NUM) [59] aims to
tune the underlying network according to application-level require-
ments. NUM configures a network (e.g. assigns bandwidth) to serve
nodes in a manner that maximizes utility functions that capture a
user’s degree of satisfaction with the network’s performance. Few
prior researchers have investigated discrete priority classes, which
we leverage in our approach, within the context of NUM. The au-
thors of [41] propose assigning more bandwidth to users (i.e. via
weighting their requests higher) based on their requested priority
levels. Similarly, [48] manages IoT devices to maximize utility by
allocating bandwidth and offloading processing, but the authors
do not use SDN or consider the data exchange middleware and
prioritized application requirements. Our cross-layer approach and
consideration of utility functions sets apart our work from most
related SDN research referenced above.

Modeling cross-layer data exchange interactions: To analyze
IoT data exchange performance we must consider all three layers’
characteristics and their effects on each other. However, existing
efforts typically focus on each layer in isolation. Therefore, we
model cross-layer interactions by composing and extending previ-
ous work at each layer through the unified framework of queueing
theory [29, 49]. Queueing Petri Nets (QPNs) enable accurate perfor-
mance prediction in pub/sub systems [34, 46]. Alternatively, [14, 15]
model and analyze the performance of pub/sub and middleware
protocols using Queueing Networks (QNs). While QPNs have an
advantage over QNs in representing parallelism, QNs provide con-
venient primitives to construct well-formed performance models
for efficient analysis [56]. Furthermore, QNs have been extensively
applied to model network infrastructure performance [5, 24, 25, 27]
and more recently SDN infrastructure [22, 51, 52].

2.3 Enabling Event Prioritization
Wenow overview how the FireDeXmiddleware addresses the above
challenges. We frame our discussions in terms of the three layers
depicted in Fig. 1: mission-critical applications, abstractions repre-
senting the physical network infrastructure, and the data exchange
middleware that bridges these two to manage the overall system
configuration and flow of information. As shown in Fig. 2, FireDeX
integrates other middleware technologies: data APIs for interfac-
ing with IoT data (i.e. through the BMS), a local pub/sub broker,
a thin client middleware running on each subscribing IoT device,
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Figure 2: FireDeX middleware architecture
and SDN APIs for managing local network infrastructure. It imple-
ments the proposed algorithms and provides middleware APIs for
our data prioritization and network management approach. To en-
sure delivery of themost important events despite network resource
constraints (e.g. failures, poor signal strength, limited bandwidth), it
prioritizes events and allocates available network bandwidth
according to application requirements.

Application layer: FireDeX subscriber devices run a client mid-
dleware to establish broker connections, retrieve a list of event top-
ics, subscribe to relevant ones, and report data exchange/network
channel statistics. Because different data vary by importance, we
propose prioritizing events according to their relative importance
to the emergency response effort. To configure this, subscribers
register utility functions with their FireDeX subscriptions. These
functions capture a quantified measure of value for varying rates
of event delivery performance. Our proposed algorithms consider
these utility functions when configuring the data exchange and
network to maximize users’ utility (i.e. situational awareness).

Data exchange layer: FireDeX prioritizes subscriptions accord-
ing to their subscriber-specified utility functions. It leverages the
queueing theoretic analysis we present in §3 to estimate system
performance under a given configuration. This analysis drives the
algorithms presented in §4 that assign discrete priority classes
and allocate available network bandwidth. FireDeX connects sub-
scriber clients and the BMS data APIs with the pub/sub broker,
which performs the actual routing of events.

While some existing data exchange implementations and proto-
cols support priorities, configuring them requires specific APIs [44].
Furthermore, many popular options (e.g. the MQTT [42] protocol
and associated broker implementations) do not support priorities
and so require equal treatment of all events transmitted to the
same subscriber. To decouple FireDeX from the underlying data
exchange broker, which may be specific to the site’s BMS, we do not
employ application-layer (i.e. in-broker) prioritization. Rather, we
propose enforcing priorities at the network layer through unified
APIs provided by SDN. This approach accounts for both application-
level requirements (e.g. utility functions) and network-level state
information (e.g. available bandwidth) without mandating (or ex-
tensively modifying) specific broker technologies. Hence, FireDeX
essentially extends the data exchange broker/protocol with network
and application-aware prioritization.

Network layer: FireDeXmanages network infrastructure through
APIs provided by an SDN controller that likely runs alongside the
BMS (i.e. at the edge). It gathers network state information to de-
rive resource constraints. It combines these with the subscribers’
information requirements to drive its management algorithms. The
authors of [61] previously advocated a similar approach of centrally
gathering a global view of a pub/sub system’s state to simplify its
management. They refer to this central control approach as SDN-
like because it separates the pub/sub control and data plane. They

Figure 3: FireDeX differentially prioritizes subscriptions at
the SDN layer using multiple connections per subscriber.

further propose integrating SDN with the data exchange middle-
ware, which this centralization cleanly enables. We advocate for
this approach in IoT settings where offloading device management
and data processing from constrained devices typically leads to
centralized (i.e. cloud-centric) designs. For simplicity of discussion,
we consider the big switchmodel shown in Fig. 1 that abstracts the
entire local physical network into a single virtual SDN switch. This
provides a simplified single-network view of the whole distributed
system that may span multiple physical heterogeneous networks
(e.g. building Wi-Fi and local cellular) and different locations.

To enforce event priorities at the network layer, FireDeX lever-
ages SDN APIs. It configures priority queueing disciplines for pack-
ets matching the different subscriptions. However, for the network
to distinguish the data exchange-layer concept of subscriptions, we
must first translate it to a network-level concept. As shown in Fig.3,
we accomplish this through the SDN concept of network flows.
SDN switches match incoming packets of a particular network flow
according header information. For example, OpenFlow considers
OSI Layer 2-4 fields: IP/MAC address, UDP/TCP port, VLAN, etc. To
differentiate subscriptions as belonging to different network flows,
a FireDeX subscriber maintains multiple network connections
with the pub/sub broker (e.g. over different Layer 4 port numbers).
This may represent different applications running on the same
device and/or one application opening multiple connections. The
latter case enables the network to distinguish and manage indi-
vidual groups of subscriptions based on their assigned connection.
The data exchange middleware layer dictates this assignment of
(possibly multiple) subscriptions to one network connection and its
corresponding unique network flow. Subscribers initiate multiple
connections and then register each subscription to avoid directly
configuring the underlying data exchange broker. FireDeX also as-
signs each network flow a priority level by considering subscriber
requirements. It configures the SDN switches to forward packets
matching these network flows through the proper priority queue.

To manage available network resources, FireDeX also allocates
bandwidth to each network flow. It applies preemptive packet
drop rates that consider the utility of each network flow’s sub-
scriptions. We propose dropping lower-priority packets before
switch buffers fill up to prevent high delays and dropping of higher-
priority packets. §4.3 discusses this concept further and proposes
our optimization-based algorithm for setting these drop rates. This
algorithm is partly inspired by the aforementioned research in Net-
work Utility Maximization (NUM). However, in FireDeX subscribers
actually define the utility functions according to their information
needs, and so they indirectly cooperatively control the assignment
of bandwidth. Furthermore, our proposal leverages discrete priority
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Figure 4: FireDeX queueing network model.
classes to drive priority queueing disciplines and calculates the best
priority assignments rather than assuming them as a given input.

3 FIREDEX FORMAL MODEL
From the above scenario, we formulate a generalized model for
prioritized data exchange in mission-critical settings. FireDeX com-
bines queueing theoretic approaches from both the middleware
and network layers to construct the representative and extensible
3-layer queueing network shown in Fig. 4. The data exchange mid-
dleware bridges the network infrastructure and application layers
to enable a novel cross-layer end-to-end performance model. We
derive this analytical model to estimate a particular configuration’s
expected performance.

3.1 Queueing Network Performance Modeling
Refer to Table 1 for the notations used throughout this section.

3.1.1 Application Modeling. Let Vpi ⊆ V be the set of topics
each pi publishes to e.g. “smoke”. Let λpubpi ,vj be the publication rate
of events with topic vj published by pi per unit time.

Assumption 1. λpubpi ,vj is based on a Poisson process.

We define each subscription as a tuple r j = (si ,vj ,Ur j ) where
utility functionUr j quantifies the information value for subscriber
si receiving events with topic vj . Let Rsi = {r j ∈ R : si ∈ r j } be the
set of prioritized information requests (i.e. subscriptions) for each
subscriber si . Let λsubr j be the incoming rate of events matching
subscription r j received per unit time by subscriber si .

Let Ξr j be the success rate of delivering events matching sub-
scription r j = (si ,vj ,Ur j ) to subscriber si . By Assumption 1, we
can estimate Ξr j (i.e. by summing Poisson process rates to produce
the rate of an aggregate Poisson process) as:

E
[
Ξr j

]
=

λsubr j∑
pi ∈P λ

pub
pi ,vj

Let ∆r j be the response time: the average end-to-end delay of
events matching subscription r j = (si ,vj ,Ur j ) from the moment
they are published until si receives them. Below we calculate this
metric, which includes event processing times, network delays, etc.

3.1.2 Data Exchange Modeling. The data exchange layer rep-
resents a network of broker nodes B . We assume that each pub-
lisher/subscriber connects with a single broker that we refer to as
its home broker : bpi is the broker that pi publishes to and bsi is
the broker that subscriber si receives events from. Furthermore,
we define the set of publishers connected with bk as Pbk = {pi ∈
P : bk = bpi }, the set of subscribers connected with bk as Sbk =
{si ∈ S : bk = bsi }, and the set of subscriptions handled by bk as
Rbk = ∪si ∈Sbk Rsi .

A broker bk forwards events with rate λf wd
bk ,bi

to another broker
bi ∈ B for eventual consumption by one of the latter’s subscribers.
As depicted in Fig. 4, we model each broker bk using a single in-
bound M/M/1 queue Qin

bk
and multiple outbound M/M/1 queues

Qout
bk ,si

. By Assumption 1 and the exponentially distributed service

rate ofQin
bi
,∀bi ∈ B − {bk }, we know that λf wd

bk ,bi
is Poisson. Hence,

we can define the arrival rate of events at Qin
bk

as the sum of all
(post-network transformation) event publication/forwarding rates
over all publishers/brokers:

λinbk
=

∑
pi ∈Pbk

∑
vj ∈Vpi

Γ
(
λ
pub
pi ,vj ,pi ,bk

)
+

∑
bi ∈B,bi,bk

Γ
(
λ
f wd
bi ,bk
,bi ,bk

)
Note that Γ, which we define in §3.1.3, represents network-layer
traffic shaping due to error rates, administrative policies, etc.

Forwarding, replication, or dropping of events based on current
subscriptions occurs at the exit of Qin

bk
. Let µinbk be Qin

bk
’s service

rate for analyzing an incoming event and determining where to
forward it (e.g. based on a topic routing tree). We assume µinbk

is
constant (or averaged) across all topics and independent of current
subscriptions. Events not matching subscriptions Rbk are dropped
with rate λnosubbk

.
For each of broker bk ’s subscribers si ∈ Sbk , it forwards events

matching a subscription r j ∈ Rsi to Qout
bk ,si

with rate λthrubk ,si
for

transmission to si . Recall that each broker maintains multiple con-
nections (network flows) with each subscriber. Let µoutbk ,r j

be the
service rate at Qout

bk ,si
that captures the time it takes to map an

event matching subscription r j to the corresponding connection of
si . It forwards these publications into the network layer with rate
λ
notif y
bk ,r j

. Hence, we calculate the per-subscriber forwarding rate as:

λ
notif y
bk ,si

=
∑

r j ∈Rsi

λ
notif y
bk ,r j

FireDeX Configuration Parameters: The data exchange layer
also represents the FireDeX configuration service. FireDeX asso-
ciates each subscription with one of the network flows fj ∈ F in
order to manage subscription traffic in a network-aware manner.
Recall from §2.3 that network flows represent multiple connections
between a subscriber and its home broker. We define the set of
network flows for a particular subscriber si as Fsi ⊆ F . Additionally
FireDeX defines a set of unique priority classes yj ∈ Y . It assigns
each network flow to a priority class for managing network traffic
in an application-aware manner. Note that yj has higher priority
than yk for j < k , i.e. y0 = 0 is the highest priority.

To configure the end-to-end data exchange interactions across
all 3 layers, FireDeX employs the following functions:
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Table 1: Notations of the parameters in our cross-layer data exchange model

Application Layer

Notation Description

vj ∈ V event topics

si ∈ S subscribers

r j ∈ R subscriptions

pi ∈ P publishers

λ
pub
pi ,vj publication rate

λsubr j r j ’s delivery rate

Ξr j r j ’s success rate

∆r j r j ’s end-to-end
response time

Data Exchange Layer

Notation Description

bk ∈ B brokers

λ
notif y
bk ,r j

r j ’s notification
rate

Ψ : R 7→ F network flow for
a subscription

Φ : F 7→ Y priority for a net-
work flow

Ω : F 7→ [0, 1] packet drop rate
for a network
flow

Network Layer

Notation Description

xk ∈ X SDN switches

hj ∈ H , H = P ∪ S ∪ B network hosts

wxk ,hj ∈W ,wxk ,hj ∈ N bandwidth between xk and hj
Gvj ∈ Z>0 serialized packet size for topic vj
zhj ,hi ∈ Z , zhj ,hi ∈ [0, 1] packet error rate

Γ : N × H × H 7→ N transforms event departure to ar-
rival rates (e.g. packet errors)

fj ∈ F network flows

yj ∈ Y unique priority classes

Ψ : R 7→ F is the function mapping subscriptions (i.e. events
matching them) to the corresponding subscribers’ network flows.
Note that we denote Ψ(si ,vj ) = Ψ(r j ) as the network flow for
subscription r j = (si ,vj ,Ur j ) and so Ψ : S ×V 7→ F . As described in
§2.3, this mapping allows the SDN data plane to distinguish packets
containing events from each other based on their topics.

Φ : F 7→ Y is the function mapping network flows to priority
classes. This defines which priority class (i.e. priority queue) the
SDN infrastructure uses for a packet transmitted on network flow fj .
This packet contains event(s) matching subscriber si ’s subscription
r j where fj = Ψ(r j ). Hence Φ ◦ Ψ(r j ) is subscription r j ’s priority.

Ω : F 7→ [0, 1] is the function mapping network flows to pre-
emptive packet drop probabilities. By dropping some packets on a
network flow, FireDeX more accurately tunes the data exchange
configuration than through priority assignment alone. Somewhat
akin to network traffic policing, this technique lowers the band-
width usage of a network flow so that the aggregate bandwidth
needs of all flows does not exceed that available. By dropping pack-
ets in the lower-priority flows, this prevents switch buffers from
filling up and dropping higher-priority packets.

3.1.3 Network Modeling. Publications forwarded to the net-
work layer are encapsulated in packets for transmission by the
SDN infrastructure. To simplify the analysis used in our queueing
model, we leverage the following:

Assumption 2. The data exchange and applications encapsulate
each event in a single packet for transmission through the network.

Let X be the set of SDN switches that connect with the vari-
ous hosts H . A host hj may have multiple physical network inter-
faces/connections to one or more switches and packets between
two hosts may traverse multiple routes. However, SDN abstractions
support the following assumption that simplifies our analysis:

Assumption 3. We consider multiple switches/routes between two
hosts as aggregated into a single virtual SDN switch/link that captures
the underlying physical network topology and characteristics.

By Assumption 3, we need only to model a single big switch
serving a publisher or subscriber. Hence, we refer to xsi as the
FireDeX-managed SDN switch that controls traffic between bsi and
si . We refer to xpi as the unmanaged SDN switch that exposes the

network characteristics (defined below) of the network channel
between bpi and pi . Note that FireDeX does not manage the latter
switch because this might conflict with deployment-specific IoT
device configurations. To model multiple hosts sharing the same
network medium (e.g. a wireless channel), we apply Assumption
3 and model such a channel as one switch serving multiple hosts.
We therefore define the set of subscribers served by switch xk as
Sxk = {si ∈ S : xsi = xk }, all of their subscriptions as Rxk =
{∪si ∈Sxk Rsi }, and and all of their network flows as Fxk . Similarly,
let Pxk = {pi ∈ P : xpi = xk } be the set of publishers served by xk .

LetQum
xi be the queue modeling the unmanaged switch xi that en-

compasses a publisher-broker or broker-broker link. By Assumption
2, we have the packet arrival rate for publications and forwarded
events at switch xi as λ

pub
pi ,vj and λ

f wd
bi ,bk ,vj

respectively. We model
Qum
xi as a multi-class queue, which enables us to calculate the av-

erage transmission delay of a packet (∆txr j ) based on its size. Each
class corresponds to the topic of an event encapsulated within a
packet. Hence, we define the expected serialized size (e.g. in bytes)
of a packet that, by Assumption 2, contains a single event published
to topic vj as Gvj ∈ Z>0. By Assumption 3, we havewxk ,hj as the
bottleneck bandwidth available between two hosts (i.e. from the
switch xk serving them to the destination host hj ). Therefore, we
can define a per-topic packet transmission rate as:

µumxi ,vj =
wxi ,bk
Gvj

This enables calculating the average transmission delay ∆umxi of
packets in Qum

xi . We apply Γ to packets departing the switch queue
Qum
xi in order to transform event departure rates from a host hj

to event arrival rates at the destination host hi . To simplify our
analysis, we leave retransmission of packets for future work and
instead consider only packet error rates. Let zhj ,hi ∈ [0, 1] be this
packet error rate that, by Assumption 3, allows us to model packet
drops at the single switch between these hosts. We have the arrival
rate of publications (on topic vj from publisher pi at broker bk ) as:

Γ
(
λ
pub
pi ,vj ,pi ,bk

)
=
(
1 − zpi ,bk

)
λ
pub
pi ,vj

We define the transformed arrival rate of events forwarded from
broker bi to bk similarly.
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We model each managed SDN switch encompassing a broker-
subscriber link as two different queues: 1) an M/M/1 queue Qin

xk
that feeds into 2) our newly-proposed queueing model: a non-
preemptive priority and multi-class queue Qout

xk . By Assumption 2,
we therefore have the arrival rate at switchxk of event-encapsulating
packets within a network flow fj as λinxk ,fj .

Qin
xk processes each incoming packet by matching its header

contents to a corresponding network flow fj and determining the
assigned priority (i.e. Φ(fj )). Let µinxk be the service rate at Qin

xk
that captures the time required to perform this matching (e.g. an
SDN switch TCAM lookup), assign the given priority, and route the
packet to the appropriate output port. Note that this might actually
capture delays from forwarding packets along a multi-switch route.

Before enqueueing the packet at the correct output port, the
switch first applies the dropping policy to each flow according to
the FireDeX-computed function Ω(fj ). Because our model does not
consider further packet drops in Qin

xk or before Qout
xk , we have the

per-subscription arrival rate at Qout
xk as:

λthruxk ,r j =
(
1 − Ω ◦ Ψ

(
r j
) )

λ
notif y
bk ,r j

(1)

Multi-class priority queue Qout
xk separates the departure rates of

each packet according to its serialized size and the switch’s available
bandwidth. Note that the assigned priority class affects the response
time but not the departure rates of these packets. By Assumption
2, we therefore have the service (i.e. transmission) rate of packets
encapsulating events that match subscription r j = (si ,vj ,Ur j ) from
SDN switch xk to subscriber si as:

µoutxk ,r j =
wxk ,si
Gvj

We have the departure rate from Qout
xk as: λoutxk ,r j = λthruxk ,r j . We

then apply Assumption 2 and Γ to packets departing switch queue
Qout
xk . Considering packet error rates, we have the arrival rate of

events at subscriber si matching subscription r j = (si ,vj ,Ur j ) as:

Γ
(
λoutxk ,r j ,bsi , si

)
= λsubr j =

(
1 − zbsi ,si

)
λoutxk ,r j

3.2 End-to-end Analytical Model
We now leverage the above queueing network to derive theoreti-
cal performance results. This analysis, the accuracy of which we
validate in §5.2, enables FireDeX to tune the data exchange per-
formance characteristics of end-to-end event response time and
delivery success rate. To calculate ∆r j , the end-to-end response
time of events for subscription r j , we calculate the propagation and
queueing delays at each layer. Note that the queueing delay in our
model captures the real-world processing and network transmission
delays.

To simplify our analysis, we exploit the local nature of our target
scenario and consider only a single broker (bk ) in the remainder of
this section. Future work will explore relaxing this assumption and
extending this analysis to include the more general scenario of a
distributed broker network enabled by our queueing networkmodel
above. By the above assumption, we calculate the per-subscription
end-to-end response time metric as:

∆r j = E
[
∆
prop
pi ,bk

+ ∆umxpi

]
+ ∆bk + ∆

prop
bk ,si

+ ∆xsi (2)

where ∆
prop
bk ,hj ∈H

is the propagation delay (i.e. physical network
latency) between the broker and another host hj (bk or si ). ∆umxpi
and ∆xsi are the transmission delays of packets passing through
switches xpi and xsi respectively. ∆bk is the processing delay of
events passing through bk .

We must estimate the heterogeneous propagation delays for
this subscription’s events from each possible publisher on topic vj
i.e. {pi ∈ Pbk : vj ∈ Vpi }. By our single broker assumption, we
have this as the expected delay from any such publisher to broker
bk . In the same manner, we estimate the queueing delay at the
intermediate switch xpi . Therefore, we have:

E
[
∆
prop
pi ,bk

+ ∆umxpi

]
=

∑
{pi ∈Pbk :vj ∈Vpi }

∆
prop
pi ,bk

+ ∆umxpi
|{pi ∈ Pbk : vj ∈ Vpi }|

The average response time of (2) includes queueing delays at
each layer of FireDeX. Based on the queueing network representing
FireDeX (see Fig. 4), we identify the type of each queueing model
and their arrival/processing/transmission rates.

At the data exchange layer we use M/M/1 queues. Based on
standard solutions for M/M/1 queues [35], we have the time that
an event remains in the system (i.e. queueing time + service time;
also called average delay) given by:

∆Qmm1 (µ, λ) =
1

(µ − λ) (3)

At the network layer, we use three different types of queueing
models: i) the M/M/1 queue (Qin

xk ); ii) the multi-class queue (Qum
xi )

and iii) the non-preemptive priority and multi-class queue (Qout
xk ).

As already pointed out, we model the transmission of packets inside
the unmanaged switch queue (Qum

xi ) using a multi-class queue (each
class corresponds to the topic of an event encapsulated within a
packet). Based on standard solutions [35], the average delay for a
particular subscription rk is given by:

∆Qmcl (µ, λ, rk ) =
1

µrk − µrk
∑
r j ∈R λr j /µr j

(4)

where λ = {λr j : r j ∈ R} and µ = {µr j : r j ∈ R}.
Finally, the SDN switch is modeled using the non-preemptive

priority and multi-class queue (Qxk ). Hence, the average delay of
packets for rk assigned with yj is given by:

∆Qmclpr
(µ, λ, rk ,yj ) =

Lrk ,yj (λ, µ)
λrk

(5)

where λ = {λr j : r j ∈ R}, µ = {µr j : r j ∈ R} and Lrk ,yj is the
number of events matching subscription rk with assigned priority
yj (where Φ ◦Ψ(rk ) = yj ) in the system (queue + server) ofQmclpr .
We omit the proof of (5) due to space constraints, but the analysis
is similar to that of Section 3.4.2 in [26].

By relying on the above analytical models, we calculate the
average delay of events for any subscription r j at each node and
layer of the FireDeX queueing network according to (2).
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Data Exchange: at this layer the average delay at bk (∆bk ) is given
by calculating the queueing delay of events matching r j at both
inbound (Qin

bk
) and outbound (Qout

bk ,si
) queues – i.e., ∆bk = ∆Q in

bk
+

∆Qout
bk ,si

. Both queues are of M/M/1 type. ForQin
bk

, the incoming rate

of events is λinbk and its service rate is µinbk ; for Q
out
bk ,si

the incoming

rate of events is λthrubk ,si
and the service rate is µoutbk ,r j

. Hence, we
apply (3) to determine:

∆bk = ∆Qmm1

(
µinbk
, λinbk

)
+ ∆Qmm1

(
µoutbk ,r j

, λthrubk ,si

)
(6)

Network: at this layer the average delay (∆umxi ) at the unmanaged
switch xi (publishers-broker link) is given by calculating the queue-
ing delay of packets matching rk at the multi-class Qum

xi queue.
Hence, using the analytical model of (4) such a delay is given by:

∆umxi = ∆Qmcl

(
{µumxi ,vj : vj ∈ V}, {λpubpi ,vj : pi ∈ Pxi ,vj ∈ Vpi }, rk

)
At the SDN switch xk (broker-subscribers link) the average de-

lay (∆xk ) is given by estimating the queueing delay for packets
matching r j at both inbound (Qin

xk ) and outbound (Qout
xk ) queues –

i.e., ∆xk = ∆Q in
xk
+ ∆Qout

xk
. In the M/M/1 queue Qin

xk packets arrive

at a per-flow rate λinxk ,fj and are served with rate µinxk . Hence, by

applying (3), ∆Q in
xk

= ∆Qmm1

(
µinxk , λ

in
xk ,fj

)
.

The outbound queue (Qout
xk ), a multi-class and non-preemptive

priority queue, has a per-subscription packet arrival rate λthruxk ,r j . Its
service rates µoutxk ,r j capture the specific event/packet size of the
corresponding rk = (si ,vj ,Ur j ). Hence, we apply (5) to find:

∆Qout
xk
= ∆Qmclpr

(
{µoutxk ,r j : r j ∈ Rxk },

{λthruxk ,r j : r j ∈ Rxk }, rk ,Φ ◦ Ψ(rk )
) (7)

4 DATA EXCHANGE CONFIGURATION
ALGORITHMS

The core algorithms of FireDeX leverage the above analytical model
to configure the SDN-enabled data exchange. Considering current
system state and information requirements, they assign priorities
and preemptive drop rates to subscriptions (i.e. via Φ ◦ Ψ, Ω) in
order to maximize subscriber-defined utility functions.

4.1 Utility Functions
To capture the relative value of information for different subscrip-
tions, we propose using utility functions. Subscribers include a
utility function with their subscriptions. They depend on the rate
of successful event delivery Ξr j . The overall utility for a subscriber
depends on each of its subscriptions’ utilities and is defined as:

Usi =
∑

r j ∈Rsi

Ur j (Ξr j )

Let Ûr j be a subscription’s maximum achievable utility: delivering
the maximum number of events under ideal network conditions
(i.e. no loss, minimal latency, no other traffic to contend with).

To further capture the relative value of information between
each subscriber, we consider an overall utility of all subscribing first
responders. Each subscriber may define different utility functions
to capture the fact that each of their needs vary (e.g. the IC may
require more situational awareness than individual FFs). We define
the overall utility of the configuration for all subscribers as a sum
over each individual subscriber’s utility:

U =
∑
si ∈S

Usi

To model heterogeneous information requirements in our exper-
iments, we generate different utility functions for each subscription.
We define the base utility function as:

Ur j (Ξr j ) = αr j log(1 + Ξr j ) (8)

Where the utility weight αr j is varied for each subscription.

4.2 Priority Assignment Algorithm
FireDeX leverages the above quantified utility metrics to assign
priorities for each data flow in a manner that aims to maximize the
overall utility. We decouple the assignment of priorities from that
of drop rates for two reasons. Prioritization ensures the most im-
portant events get through first, but it does not necessarily provide
guarantees about how much data is delivered. Hence, we first assign
the priorities and then optimally set the preemptive drop rates to
tune bandwidth usage for the network flows in each priority class.
Second, this decoupling allows us to explore different policies in
these two spaces independently.

Because the assignment of discrete priorities to maximize utility
is non-trivial, we propose a heuristic to approximate a solution. It
first ranks subscriptions according their maximum utility Ûr j scaled
by the corresponding required bandwidth. This metric essentially
measures information value per unit bandwidth and lets FireDeX
consider that some high-value subscriptions may consume a lot of
network resources. We define this metric as:

Ûr j

Gvj λ
notif y
bk ,r j

(9)

To approximate a solution to the priority-assignment problem,
we propose the following greedy approach for each subscriber si :

(1) Sort the subscriptions r j ∈ Rsi by (9)
(2) Split this list into |Fsi | sub-lists of approximately equal size
(3) Assign Ψ(r j ) = Fsi (k) for each r j ∈ sub-list number k
(4) Split the list of flows Fsi into approximately |Y | sub-lists of

approximately equal size
(5) Assign Φ(fj ) = yk for each fj ∈ sub-list number k

Note that this splitting up of lists handles unequally-sized splits
(e.g. |Fsi | > |Y |) by preferring higher priorities first.

This priority assignment ensures delivery of the highest-priority
events if possible. However, an overloaded system will fill switch
buffers and lead to high delay and loss of lower-priority events.
Hence, we apply preemptive drop rates to avoid such a case.
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4.3 Ensuring Queue Stability via Preemptive
Drop Rates

Given the above priority assignment, FireDeX further fine-tunes the
subscriptions’ successful notification rate Ξr j . Based on requested
subscription utility functions and current network state (e.g. band-
width constraints), it applies a preemptive packet dropping policy.
This improves overall utility of the system’s configuration by essen-
tially allocating available bandwidth to the network flows. Crucially,
this bandwidth allocation also ensures queue stability throughout
the network. That is, if packets arrive at the switches’ inbound
queues too quickly, the forwarding queues will grow in size until
the buffers fill up and packets are dropped. To prevent the dropping
of high-value events, FireDeX preemptively drops lower-priority
packets. The algorithms presented here determine with what prob-
ability packets of each network flow should be dropped (Ω(fj )) to
improve situational awareness while ensuring queue stability.

Not only does ensuring queue stability improve system per-
formance, it also satisfies conditions necessary for our analyti-
cal model’s results to prove accurate. Let ρQ = λ

µ be the server
utilization (i.e. probability that the server is busy) of the corre-
sponding queue (e.g. Qout

xk ). By [26] the system remains unsatu-
rated (i.e. queue stability is ensured) when ρQ < 1. For FireDeX’s

M/M/1 queues (i.e., Qin
bk
, Qout

bk ,si
, Qin

xk ) we define: ρQ in
bk
=

λinbk
µ inbk

,

ρQout
bk ,si

=
λthrubk ,si
µoutbk ,rj

and ρQ in
xk
=

λinxk , fj
µ inxk

. FireDeX’s multi-class queues

Qum
xi and Qout

xk have per-topic and per-subscription arrival and
service rates respectively. We have their server utilization as:

ρQum
xi
=

∑
Pxi

∑
vj ∈Vpi

λ
pub
pi ,vj

µumxi ,vj
(10)

ρQout
xk
=

∑
r j ∈Rxk

λthruxk ,r j

µoutxk ,r j
(11)

To improve successful delivery rate while ensuring queue sta-
bility, we propose several algorithms of increasing sophistication
below. Note that these algorithmic formulations currently only con-
sider the outbound queue of the SDN switches for this constraint
as tuning the drop rates only affects ρQout

xk
. Also recall that this

queue captures the bottleneck bandwidth of the network route
from broker to subscriber. Future work will explore simultaneously
balancing the load across data exchange brokers to also ensure
stability of their queues within our model.

Each algorithm makes use of a parameter ρ̃ in tuning the sys-
tem’s tolerance to approaching, but never exceeding, the queue
saturation point of ρQout

xk
= 1. Clearly, to satisfy the strict inequality

ρQout
xk
< 1 we must have ρ̃ > 0. Setting ρ̃ even higher provides am-

ple buffer within the SDN switch queues for resilience to temporary
notification rate spikes that might otherwise lead to queue satura-
tion. Even if this condition is just barely satisfied (e.g. ρ̃ = 10−10),
queues will still grow quite large and thereby cause high delay.

Therefore, the following drop rate policies set Ω such that:

ρQout
xk
= 1 − ρ̃ (12)

Flat drop rates: this simple naive policy sets all drop rates equal
to satisfy Eq. (12) by solving Eq. (11) for a parameter β such that:

Ω(fj ) = β (13)
Linear drop rates: this more information value-aware policy

sets the drop rates for each network flow according to its assigned
priority level. It solves Eq. (11) for a parameter β that satisfies Eq.
(12) with drop rates set to:

Ω(fj ) = βΦ(fj ) (14)
Exponential drop rates: similar to Linear, this policy sets drop

rates according to priority level. It solves Eq. (11) for a parameter β
that satisfies (12) with drop rates set to:

Ω(fj ) = 1 − β−Φ(fj ) (15)
Optimized drop rates: the following convex optimization for-

mulation assigns drop rates to maximize overall utility. Given the
previously-assigned priorities as input, FireDeX assigns drop rates
by solving the following convex optimization problem:

maximize U

subject to Ω(fj ) ∈ [0, 1],∀fj ∈ F

ρQout
xk

≤ 1 − ρ̃ , ∀xk ∈ X

(16)

Note that the second constraint ensures available bandwidth con-
straints are met (i.e. queue stability) according to the ρ̃ parameter.

As long as the chosen utility functions are concave (e.g. loga-
rithm) within the feasible domain of assigned drop rates, then (16)
can be expressed as a convex optimization problem and efficiently
solved. Hence, we define such a utility function, such as that given
in (8), that takes as input our analytical model for determining
λsubr j . Because this is an affine function over the drop rates, we can
optimally solve for drop rates that maximize the overall system
utility. We used CVXPY [1, 20] to implement this approach in the
FireDeX middleware.

5 EXPERIMENTAL RESULTS
FireDeX uses the analytical model given in §3.2 to estimate end-
to-end response times and success rates for event notifications
to interested subscribers. We validate this analysis by using and
extending an open source queueing simulator to represent our pro-
posed system. We compare the subscribers’ end-to-end response
times given by the analytical model with those given by the simu-
lation. Note that we omit the trivial results for validating success
rates. In order to improve the figures’ legibility, we did not include
error bars in our plots as the simulation results’ confidence intervals
are very small (less than two orders of magnitude from the corre-
sponding mean values presented in the plots). We further validate
the model’s accuracy under greater numbers of subscribers.

After validating our model, we then use it in combination with
the simulator to evaluate the FireDeX approach for a given con-
figuration. In particular, we compare our approach’s efficacy with
that of an unprioritized system and evaluate the trade-off between
response times and success rates. We use our proposed priority-
assignment algorithm, which we call bandwidth-adjusted-prio, and
the exponential drop rate policy. Subsequently, we utilize the analyt-
ical model only to compare different algorithms’ ability to maximize
the overall value of information captured.
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Table 2: Default parameters for our experimental configurations.

DX
params

#topics (|V |) pub rate (λpubpi ,vj ) event size (Gvj ) #subscriptions (|Rsi |) utility weight (αr j )

Telemetry data 140 Exp( 16 ) ∈ [4,7] Exp( 1
110 ) ∈ [90,500] 70 Exp( 1

0.5 ) ∈ [0.01,2]

Async events 60 Exp( 14 ) ∈ [3,5] Exp( 1
800 ) ∈ [500,1100] 42 Exp(1) ∈ [0.1,4]

Net
params

#subscribers (|S |) #publishers (|P |) #flows (|Fsi |) #priorities (|Y |) bandwidth (wsi ) ρ tolerance (ρ̃ )

10 160 9 9 80 Mbps 0.1

5.1 Experimental Setup
We developed a Python-based framework that models the real-
world scenario given in §2.1 and provides input data for our simu-
lations. We configure it to consider two classes of topics that repre-
sent events: sensor telemetry readings published periodically and
asynchronously-published notifications that indicate real-world
phenomena detected from analysis of raw sensor readings. This
framework leverages the probability distributions and parameters
given in Table 2 to generate random configurations for each pub-
lisher, subscriber, the broker, and the network. For example, it
selects the publication rate and packet size of events from the given
distributions. Note that we bound these values to maintain more
realistic parameters by redrawing a new one when it lies outside the
given range. Note that the actual topics published and subscribed
to are chosen uniformly at random from those available.

Themodel presented in §3 generically captures a very wide range
of scenarios and system configurations. To reduce the number of
variables we explore in our experiments, we only simulate a single
(i.e. last-hop) SDN switch between the broker and subscriber. Recall
that this represents the bottleneck bandwidth and transmission
delays. Also note that propagation delay and error rates are typi-
cally modeled as constant values. Hence, we ignore them for these
experiments to focus instead on the variable delays our model aims
to capture. Furthermore, we consider only 9 priority classes due
to practical limitations of many existing network traffic and data
exchange management systems. For example, Linux TC [37] and
AMQP 0.9.1 [2] only support 8 and 10 priority queues respectively.
Queueing network simulator: after generating these configu-
ration parameters for a single instance of a scenario, the above
framework feeds them into a simulator to drive its pseudo-random
number generators. That is, these parameters correspond to the
expected values of the probability distributions from which the
simulator draws the actual individual publications’ arrival times
and packet sizes. Note that we use exponential distributions in
order to maintain our assumption of Poisson arrival/service rates.
This simulator extends JINQS [23], a Java simulation library for
multiclass queueing networks. JINQS provides a suite of primitives
that allow developers to rapidly build simulations for a wide range
of queueing networks. We leverage this power and extend JINQS
to: i) represent the queueing network introduced in Fig. 4; ii) imple-
ment our new multi-class and non-preemptive priority queueing
model; iii) simulate pub/sub interactions using a set of configu-
ration parameters provided by our Python-based framework. To
evaluate FireDeX, we generate parameters and run the simulator
10 times for each configuration and then average across these. Each
run generates approximately 6,500,000 publications to accurately
calculate per-subscription response times and success rates.
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Figure 5: Analytical vs. simulation end-to-end response
times for varying traffic loads (ρQout

xk
).

5.2 Validating our Queueing Network Model
To prove the accuracy of the theoretical analysis we developed in
§3.2, we now compare its estimated performance metrics with those
calculated from the aforementioned simulator.

5.2.1 Varying traffic loads. Recall that the SDN switch’s outbound
queue (shown in Fig. 4) captures the bottleneck bandwidth of the
network route from broker to subscriber. FireDeX uses the corre-
sponding server utilization (ρQout

xk
) to decide the bandwidth tun-

ing by assigning drop rates. Therefore, we parameterize the simu-
lated queueing network to vary the system’s network traffic load:
a) medium-load conditions (ρQout

xk
= 0.6); b) high-load conditions

(i.e. close to saturation – ρQout
xk

= 0.95); c) overloaded conditions
(i.e. saturated – ρQout

xk
= 1.7). Note that the saturated case (3rd)

corresponds to the default parameters in Table 2. To achieve the
medium-load (1st) and high-load (2nd) cases, we set the number of
subscriptions for each topic class respectively: i) 21,15; and ii) 42,24.

Fig. 5 shows the results of these experiments according to as-
signed priority class and averaged across all topics, subscribers, etc.
Comparing the curves of both the simulated measurements and
the analytical results obtained by Eq. (2) reveal our model’s high
accuracy. We notice small differences for events with lower priority
levels. In particular, note priority level 8’s differences: 0.35 ms in
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Figure 6: Analytical vs. simulation end-to-end response
times for varying numbers of subscribers.

Fig. 5a, 13.98 ms in Fig. 5b and 8.24 ms in Fig. 5c. Because the system
approaches saturation in Figs. 5b and 5c, we deem these results
acceptable. In Fig. 5c, FireDeX uses our drop policy mechanism to
drop packets at the SDN switch and return the system to below
saturation (i.e. ρQout

xk
= 0.9 by using ρ̃ = 0.1).

5.2.2 Scaling up number of subscribers. We now validate our an-
alytical model’s accuracy under varying numbers of subscribers:
|S | = 1, 10, 20, 50, 100. To maintain the same degree of system satu-
ration (i.e. ρQout

xk
= 1.7), we increase the bandwidth proportional

to the number of subscribers: wxk ,si = 8Mbps . We keep all other
parameters according to Table 2. According to these parameters, we
measure the simulated mean response times and plot them vs. those
calculated using (2) in Fig. 6. Note the curve for each number of
subscribers that shows response time increasing with the priority
class. From this comparison, we see that the absolute deviation
between the two curves does not exceed 10 ms across all priority
levels. Therefore, our model remains accurate even with higher
numbers of subscribers.

5.3 Evaluating the FireDeX Approach
We now compare our approach’s efficacy with that of an unpriori-
tized system and a system without preemptive packet drops.

We apply a buffer capacity of k packets for the simulator’s SDN
switch outbound queue. This models a real-world switch dropping
packets when the buffer fills up. It drops the incoming packet if
its priority class is less than or equal to the lowest priority class
of those in the buffer. Otherwise, it evicts lower-priority packets
to make space in the buffer. We set k = 2000 based on reported
buffer sizes of various real-world SDN switches[16]. Additionally,
we configure this queue in 3 different ways:

i) No priority assignment or drop policy features (i.e. a sim-
ple switch that treats all packets identically and only drops
incoming ones when its buffer has filled up)

ii) Priority assignment only (i.e. no drop rates)
iii) Both priorities and drop rates (i.e. the complete FireDeX

approach)
These experiments use the parameters given in Table 2. Figs. 7

and 8 show the success rates and end-to-end response times, re-
spectively. Configuration (i) results in a 58% average success rate
and 0.9 sec average response time regardless of assigned priority.
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Figure 7: Comparing success rates for no priorities (i.e. sin-
gle switch buffer), priorities only, and an added drop policy.
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Figure 8: Comparing response times for no priorities (i.e. sin-
gle switch buffer), priorities only, and an added drop policy.

The configuration (ii) experiments used the algorithm we pro-
posed in §4.2, which we call bw-adjusted-prio, for assigning pri-
orities to each network flow (i.e. to their contained subscriptions
and associated packets). The results demonstrate that priority as-
signment significantly improves both response times and success
rates for higher priority subscriptions. In particular, subscriptions
with priorities 0-4 have a response time less than 4 ms and 100%
success rate. However, the success rate of lower priority subscrip-
tions suddenly decreases while the response time increases to the
order of seconds. For instance, those with priority 6 have a 45%
success rate and 11 sec. response time. Additionally, subscriptions
with priorities 7,8 have very low success rates (almost all packets
dropped), while those events successfully delivered have a high
response time of 20 sec.

The results for configuration (iii) demonstrate how applying
drop rates further improves response time to the order of millisec-
onds. Specifically, priority 0-6 subscriptions have a response time
under 6 ms, whereas those with priority 8 have a response time of
647 ms. The most important subscriptions (i.e. priority 0) have 100%
success rate. The FireDeX exponential drop rate policy smoothly
decreases the success rate proportional to the priority level. This
demonstrates our approach to controlling the success rate based
on a subscriber’s available bandwidth in order to achieve lower re-
sponse times. Next, we compare the level of overall utility achieved
using the various priority assignment and drop rate algorithms that
base their configurations on the subscriptions’ utility functions.
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Figure 9: Comparing priority-assignment algorithms with
other naive approaches.
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Figure 10: Comparing drop rate policies by varying the util-
ity of one subscription class relative to the other.

5.4 Comparing Prioritization & Drop Rate
Algorithms for Situational Awareness

We now compare different algorithms’ ability to maximize the value
of information captured for a given configuration. We measure this
as the achieved utility rate: the ratio of a subscription’s max utility
(Ûr j ) to achieved utility averaged over all subscriptions.

Fig. 9 compares our proposed priority-assignment algorithm
(named bw-adjusted-prio) with: no priorities (i.e. a single queue;
named no-prio), randomly-assigned priorities (i.e. to show the poor
performance resulting from inaccurate priority assignment; named
random-prio), and a naive version of the proposed greedy algorithm
that, when ranking subscriptions, considers only max utility with-
out scaling by the bandwidth requirement (named info-prio). This
figure shows how leveraging network awareness when assigning
priorities improves the achieved utility rate by 12% vs. the naive
version and 36% vs. no prioritization. Note that we do not assign
drop rates for the priority algorithms comparison. Instead, we con-
figure the simulator to drop packets once the buffers fill up in order
to compare the priority-assignment algorithms only. With drop
rates, FireDeX improves the value of exchanged data by 42% vs.
prioritization only and 94% vs. no prioritization.

We then compare the four drop rate-assignment algorithms out-
lined in §4.3 in conjunction with the best-performing bw-adjusted-
prio algorithm. To demonstrate FireDeX’s ability to improve sit-
uational awareness for heterogeneous data and information re-
quirements, our experiments varied the utilities of each topic class

relative to the other. We increase the random variable distribu-
tion parameters used to generate the utility weights (αr j ) of one
topic class relative to the other (i.e. telemetry data vs. the higher-
utility higher-bandwidth lower-publication frequency asynchro-
nous events). Fig. 10’s x-axis shows the factor we scale up the asyn-
chronous event class’s αr j by as compared with the Table 2 defaults.
These results demonstrate the optimization-based algorithm’s su-
periority in capturing the most overall utility (i.e. it maximizes
situational awareness) given particular network conditions.

6 CONCLUDING REMARKS
In this paper we presented FireDeX: an extensible middleware for
managing mission-critical IoT data exchange. Our proposed SDN-
enabled 3-layer approach bridges application-specified information
requirements, generic data exchange capabilities, and physical net-
work characteristics. Its algorithms assign priorities to subscriptions
and tune their bandwidth allocation (i.e. via packet drop rates) to
maximize overall situational awareness. Our experimental results
showed that this approach greatly improves the performance in
terms of information value captured as well as end-to-end delays.

The cross-layer queueing theoretic model serves as a sound
theoretical framework underpinning the FireDeX middleware and
enables the analysis used to drive its algorithms. Its modular design
supports composition of alternative queueing models. Hence it
lays the groundwork for many potential extensions and alterations,
some of which we will address in future work. For example, we
aim to relax some of the Assumptions in §3: considering multiple
switches and physical network routes in managing subscriber data
flows; considering non-Poisson arrival and service rates by using
e.g. G/G/1 queues; converting larger events into many packets (or
many events into one packet) by applying the queueing theoretic
concept of batch arrivals [50]; configuring an entire broker network
rather than just the BMS’s local broker.

To study performance issues arising from a real-world implemen-
tation, we are currently developing a Python-based middleware pro-
totype. It incorporates the algorithm implementations with RESTful
services for managing an MQTT-SN[30] data exchange broker and
clients through interactions with an SDN controller. We are also
developing a SFF situational awareness dashboard. Upon comple-
tion of this prototype, we will deploy it in a smart building on the
UCI campus and integrate it with our existing IoT testbed privacy-
preserving smart building system [8, 40]. This will enable studies
into: how closely our analysis models a real-world system; man-
aging dynamic conditions such as subscriber churn; considering
SDN overhead (e.g. flow table space required, delay for configura-
tion changes and statistics collection); conducting IoT-enhanced
demonstration drills with fire fighters.
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