Multi-Sensor Calibration Planning in IoT-Enabled
Smart Spaces

iuxi Zhu*, Francoise Sailhan®, Md Yusuf Sarwar Uddin*, Valérie Issarny*, Nalini Venkatasubramanian*
y
*Department of Computer Science, University of California, Irvine
t Cedric Laboratory, Cnam Paris; f MiMove team, Inria Paris

Abstract—Emerging applications in smart cities and commu-
nities require massive IoT deployments using sensors/actuators
(things) that can enhance citizens’ quality of life and public safety.
However, budget constraints often lead to limited instrumentation
and/or the use of low-cost sensors that are subject to drift and
bias. This raises concerns of robustness and accuracy of the
decisions made on uncertain data. To enable effective decision-
making while fully exploiting the potential of low-cost sensors, we
propose to send mobile units (e.g., trained personnel) equipped
with high-quality (more expensive) and freshly-calibrated ref-
erence sensors so as to carry out calibration in the field. We
design and implement an efficient cooperative approach to solve
the calibration planning problem, which aims at minimizing the
cost of the recurring calibration of multiple sensor types in
the long-term operation. We propose a two-phase solution that
consists of a sensor selection phase that minimizes the average
cost of recurring calibration, and a path planning phase that
minimizes the travel cost of multiple calibrators which have load
constraints. We provide fast and effective heuristics for both
phases. We further build a prototype that facilitates the mapping
of the deployment field and provides navigation guidance to
mobile calibrators. Extensive use-case-driven simulations show
our proposed approach significantly reduces the average cost
compared to naive approaches: up to 30% in a moderate-sized
indoor case, and higher in outdoor cases depending on the scale.

I. INTRODUCTION

The advent of IoT ecosystems with low-cost sensors and ac-
tuators is enabling the widespread deployment of smart spaces
in our homes, communities, and cities. Such smart spaces are
a valuable source of knowledge and can drive applications to
enhance public safety, personal health and community well-
being [1], [2], [3]. The associated challenges in the realization
of this vision are enormous — deployment/operation cost,
big data, interoperability, data analytics, and resource-efficient
networking, to name a few [4], [5] — and are on the research
agenda of next-generation digital sciences. In this paper, we
address cost-accuracy issues that arise in the deployment of af-
fordable IoT systems. In particular, the aggregation of relevant
knowledge at scale from low-cost smart spaces is problematic
since low-cost sensing solutions imply low accuracy and
faster degradation/drift. Recent experiences, including by the
authors, show that the relative inaccuracy of the connected
devices can be alleviated through the automated and in-situ
calibration of sensors — made possible due to the linearity
of the bias in most cases [6]. For example, mobile platforms
(including humans that carry calibration devices) can visit the
smart spaces, either opportunistically or in a planned manner,
to assess the biases of the deployed sensors and compensate

for errors [7]. One can thus generate “sufficiently accurate”
knowledge over time through the frequent calibration of the
low-cost sensors in the field; however, the low deployment cost
might result in increased maintenance costs! Careful planning
of the calibration process is therefore essential for the cost-
effective monitoring of the smart spaces — this is increasingly
important as the number and size of smart spaces grow.

In this paper, we address the calibration planning problem.
The aim is to develop a plan for the calibration of a large
number of inexpensive (and often inaccurate) sensors in a
smart space using high-integrity reference sensors that are
mobile, such that (a) the deployment and operational costs for
calibration are minimized while (b) maintaining a sufficient
observation accuracy from the sensor measurements. More
realistically, given the knowledge of a sensor’s degradation
characteristics, we program its calibration with respect to an
observed phenomenon so as to maintain an adequate sensing
accuracy while minimizing the required effort from the mobile
calibrators. We formalize the above as a multi-path planning
problem, which we solve via intelligent heuristics, and validate
using real-world settings. Our key contributions include:

o A measurement study to help understand the calibration
issue of low-cost sensors for environmental monitoring,
which motivates the proposed approach for the scalable
calibration of IoT-enabled smart spaces (Section II).

o Long-term multi-sensor calibration planning as a service
that exploits device locality, sensor characteristics, and
application needs.

e The characterization and formulation of the multi-sensor
calibration planning problem (Section III) and discussion
of NP-hardness.

o A two-phase iterative solution and a family of heuristic
methods to enable the cost-effective planning of multi-
sensor calibration in large smart spaces and over longer
time periods (Section IV).

o The validation of our approach and algorithms leveraging
real-world indoor and outdoor smart spaces settings from
our ongoing testbeds in Irvine, CA and Paris, France;
results show significant cost improvement while main-
taining adequate accuracy.

« Initial steps towards a prototype of a calibration planning
service for IoT smart spaces with: (i) a dashboard to map
the deployment of sensor nodes over large spaces, and (ii)
a mobile app that the mobile calibrators use along their
calibration journeys (Section V).

Explosive gas (MQ-2)

= Sensor2

M i A L\lw

Sensor 1

o 101 o o s

CO and flammable gas (MQ-9)
j Sensof\1
= Sensof2

101 o o s

(b)

Fig. 1. UCI testbed in Donald Bren Hall (Dept. of Computer Science), showing (a) a node deployed in our lab, where we reproduced the sensor deterioration
process; (b) readings from two pairs of low-cost sensors on the test node, 3 months after their installment

II. MOTIVATION AND BACKGROUND EXPERIENCE

The widespread deployment of low-cost IoT technologies
and the increasing popularity of corwdsensing enable fine
grained monitoring of physical phenomena that are spatio-
temporally distributed. Experiences in crowdsensing and IoT
deployments indicate that, in general, measurements gathered
from low-cost sensors deviate from the ground truth.

Our first set of experiences in calibration comes from the
launch of an urban scale experiment with the city of Paris in
2015". As part of our efforts, we developed a crowdsensing ap-
plication for mobile phones for monitoring the exposure of the
urban population to environmental noise pollution [8]. While
crowdsensing may be a cost-effective approach for monitoring
urban environmental conditions (e.g., noise) that exhibit high
spatio-temporal variability, the relatively low quality of the
embedded sensors as well as the uncertain sensing context
required dedicated actions. We quickly learned (as anticipated)
that only a low percentage of the crowdsensed measurements
actually contribute to the analysis of the urban noise pollution.
We thus needed to enhance the quality of the observations
[9]. As a first step, we thoroughly studied the bias in smart-
phone noise sensing against a reference sound level meter,
which helped us develop a protocol for calibrating individual
handsets [10]. Through experimental studies, we demonstrated
that a calibration protocol can help gather observations that
can more accurately map noise pollution at the district level
[11]. Unfortunately, the proposed calibration protocol places
a high demand on the end-users who must actively participate
in the calibration. We subsequently investigated a distributed
protocol for the opportunistic multi-party calibration of devices
located in the same sensing and communication range [12].

The second experience in calibration comes from lessons
learned while deploying IoT-enabled environmental sensing in
the SCALE project [13], [14]; here, we deployed inexpensive
multi-sensor platforms (called SCALE boxes) at multiple lo-
cations worldwide including Irvine, CA; Montgomery County,
MD [13], and Dhaka, Bangladesh [15], [16]. A SCALE node
is a Raspberry-Pi-based multi-sensor box with middleware
(SCALE client) that provides flexible interfaces for data col-
lection for a wide range of sensor types (gas, light, air quality,

I www.inria.fr/en/centre/paris/news/launch-of-soundcity-mobile-application

temperature, seismic, camera, etc.). The SCALE client utilizes
a publish-subscribe approach to organize raw data and detected
events into topics that are published to a cloud (or edge) data
exchange service. IoT applications subscribe to relevant topics
and receive updates. The deployments allow us to obtain rich
information about the sensor behaviors and especially their
respective deterioration across time in various environments.
In all cases, we observed a deterioration in the response of the
low-cost gas sensors over time.

At UC Irvine, SCALE was used in a smart instrumented
building for everyday monitoring [17] — explosive gas sen-
sors, useful in emergency response, were occasionally trig-
gered externally. As part of our testbed, various sensors and
monitoring devices (e.g., microphones, surveillance cameras,
power meters, BLE beacons — for the location tracking of
participants) were deployed in multiple floors of the CS
department building. To validate our observations and generate
a custom model of sensing deterioration, we developed a
measurement platform to reproduce the deterioration process.
Here, the custom sensor box was instrumented with 4 pairs
of low-cost sensors as a “test node” (Figure la). Figure 1b
shows the data reported by two pairs of MQ gas sensors 3—4
months after the installment: long-running MQ-2 sensors that
were connected to a running node for more than two months
generated different values at the same location and show
significant difference in sensitivity when exposed to similar
stimuli. Such difference has also been observed during/after
deployment campaigns [18], [19].

State of the Art Approaches: The calibration of a sensor lies
in (i) generating a controlled stimuli = and (ii) analyzing the
sensor response y. Then, the true (generated) signal x, which
serves as ground truth, is compared with the sensor response
y so as to obtain the mapping between the sensor response
and the true value; the calibration parameters are accordingly
adjusted. The calibration is typically performed once in a
laboratory so as to avoid the addition of any environmental
interference/noise to the high-fidelity/true signal. However, the
calibration does not take into account the context wherein the
sensor evolves, even though environmental factors, e.g., solar
radiation, strongly influence the readings provided by sensors
(e.g., air temperature). Recent work focuses on automatically
calibrating sensors in the field, without relying on a controlled

— Maintenance Period -

Find number and time of iterations
Iteration
Time to Next Iteration
[| [[| |

For each iteration
Select a set of sensors and find the number and
path(s) of calibrator(s)
7
s

Some Sensor(s)
Need Cali. Again

Sensors Needing
Cali. This Iter.
Must Select

Example Spot
3 Nodes
4 Sensors Each

Other Selected
Sensors Seeking
Lower Avg. Cost

Depot / 1—-___ % o5
) ‘' Paths of
Multi- party multi-hop calibration at each spot ¥ Calibrators

Fig. 2. Calibration planning over a long maintenance period.

stimuli and without a well-defined range of conditions. This
is commonly referred to as blind calibration and it consists
in calibrating a (uncalibrated) sensor using the measurements
provided by a neighboring (calibrated) sensor. There are two
approaches to the blind calibration of a set of sensors depend-
ing on whether the sensors are static or mobile. In the case
of (static) WSNs, the common assumption is that the deploy-
ment is sufficiently dense so that neighboring sensors provide
nearly identical measurements [20], [21]. Then, the inaccurate
readings of an uncalibrated sensor can be compensated using
the measurements provided by a nearby (calibrated) sensor. In
the case of mobile sensors, multi-hop calibration [22], [23],
[24] allows mobile sensors to get calibrated “indirectly” using
other mobile sensors that have been calibrated by the reference
sensor. Multi-party calibration [12] derives regression models
to solve the calibration problem when there are multiple (more
than two) participants. Recent work also investigates planning
problems, e.g., [24] explores the in-situ placement of reference
sensors in the field; [7] proposes a TSP based path planning
algorithm for a mobile calibrator.

In contrast to the above efforts, we take a more holistic
approach to low-cost calibration in smart spaces at scale. First,
we consider the presence of heterogeneous sensor types with
varying calibration characteristics. Our proposed approach is
application-aware and is able to take into account diverse
sensing needs (sensor type, sensing accuracy) presented by
the context at hand. We assume the ability to utilize multiple
mobile calibrators. We exploit the locality of in-situ sensors
(that can calibrate each other) to reduce the cost of mobile
calibrators. The multi-step approach, presented next, highlights
the overall scheme for a more comprehensive and efficient
calibration planning mechanism for IoT-enabled smart spaces.

IIT. MULTI-SENSOR CALIBRATION PLANNING

Our objective is to enable the cost-efficient calibration
planning of a given smart space with multiple types of sensors
and diverse applications. The target environment assumes the
in-situ deployment of a large number of inexpensive sensors
with an adequate number of high-precision mobile calibrators
(e.g., trained workers that calibrate the in-situ devices). We

propose an effective approach (Figure 2) to the planning of the
sensor calibration over a given — possibly long — maintenance
period T": (i) First, we partition the space to form calibration
spots by exploiting the locality of in-situ sensors; a sensor can
calibrate other sensors of the same type at the same spot. (ii)
Next, we carry out multiple iterations of calibration during the
given maintenance period 7'. Our challenge lies in determining
the number of iterations and the time at which each iteration
is executed. Furthermore, in each iteration we determine: the
sensors to calibrate, the number of mobile calibrators needed,
and the paths taken by each mobile calibrator. The sensor
calibration is then carried out accordingly over a number of)
iterations so that the overall cost over 71" is kept to a minimum
and ensures that all the sensors always comply with the data
accuracy requirements. The planning problem then amounts
to identifying the least number of iterations and planning
the calibration at each iteration w=1,2,...,€) so that the
number of workers involved is also kept to a minimum. Next,
we introduce the notations and assumptions underlying our
formalization of the multi-sensor calibration planning problem.

A. Notations and Assumptions

A node n;, j=1,2,..., N, is an IoT device that embeds
one or more types of low-cost sensors. A sensor type s,
k=1,2,..., K, refers to the capability of detecting a certain
type of phenomenon (e.g., temperature, gas concentration),
which usually requires a specific kind (or combination) of low-
cost sensor(s). Then, we denote an individual sensor by 7 i,
and we introduce the binary sensor presence matrix Qnx x to
characterize the set of available sensors so that @, ;=1 (resp.
0) if sensor type s, is present (resp. absent) on node n;.

1) Calibration-Related Terms: A reference sensor is a
high-quality sensor, whose readings serve as the ground truth
and therefore can be used to calibrate other sensors that sense
the same phenomenon. We assume that the reference sensors
are calibrated offline (e.g., in a lab before each iteration).

A mobile calibrator (or simply a calibrator) m; is a person
who carries reference sensors and visits the field to calibrate
the deployed low-cost sensors. For simplicity, we assume that
a calibrator can be equipped with any of the reference sensors
needed across his/her journey. Sensor calibration takes place
when a calibrator m; visits a node n; and stays at the spot
for long enough to calibrate a sensor n; .

Each sensor type sy, is associated with a calibration time 7,
that ranges from a few seconds to several minutes, depending
on the phenomenon detected by the type of sensor and the
calibration complexity. We associate each sensor type s; with
a calibration period T}, which characterizes the maximum
duration, during which the sensors remain valid (i.e. the
measurements have sufficient accuracy) once calibrated. The
period depends on the usage scenario and may be learned from
empirical study.

During operation, each individual sensor n; ;. is associated
with a time to next calibration (TTNC) F} ;. that indicates
how soon the sensor needs to be (re-)calibrated. The TTNC
matrix Fy«x then represents the TTNCs of all the sensors.

F is a function of time, where each F}; decreases between
iterations and is reset to T}, when n; ;, is calibrated. We further
denote Flw_] (resp. F[w4]), the matrix TTNC immediately
before (resp. after) the iteration w. Note that F is non-negative,
ie. Fjplws]>0, V(j, k), weN. If node n; does not hold a
sensor of type s, the corresponding TTNC is infinite, i.e.
Fj kwt]=400, VweN, if Q; 1=0.

A sensor selection is a collection of sensors (selected for
calibration) represented by a binary matrix Ty« i [w], where
I'; r<Qj.%. If sensor n; j, is selected for calibration at iteration
w (i.e. T'j x[w]=1), then, at the end of this iteration, its TTNC is
reset to its calibration period T}, i.e. F} ;w4]=T}; otherwise,
its TTNC stays unchanged (during iteration w):

Flwy] =T[w]o Ty + (1 —T'[w]) o Flw_] (D)

Where T is the nodal calibration period matrix that con-
sists of N identical rows of [T},T5,---,Tk]; “o” is the
element-wise multiplication of matrices. Typically, there is
no need to run an iteration if no sensor needs immediate
calibration; also, special needs and unexpected changes could
be easily addressed by altering the TTNC matrix. Hence,
the time to next iteration (TTNI) after w is the minimum
TTNC of all the sensors, i.e. t,41—t,=minFlw,]; thus,
the TTNC matrix immediately before the next iteration is
F[(w+1)_]=F|w;]— min Flw,].

2) Smart-Space-Related Terms: We abstract a smart space
as a set of spots that are such that sensor nodes deployed at
a spot vy, [=1,2, ..., L, are sufficiently co-located to enable
their concurrent calibration by a single calibrator. Note that
this may possibly involve leveraging multi-party multi-hop cal-
ibration (Section II). We then map a smart space as a directed
graph G=(V, E), where each vertex v,€V corresponds to a
spot and each edge weight (v, ,1,) denotes the average time
taken by a calibrator to move from v, to v;,. The graph can
be represented as an adjacency matrix G, xr,, where Gy, , is
the weight on the directed edge (v, ,v;,) (i.e. the movement
cost). As long as each spot is physically accessible, G is a
complete digraph and all its edges have finite weights.

The node locations are represented by a binary location
matrix Dy, where each row represents a node and each
column a spot. We set D;;=1 if node n; is deployed at
spot v;; or O otherwise. A node is deployed at a single
spot, so ZlL:l D;;=1. For simplicity, we assume that all
the calibrators depart from the same spot, which is referred
to as the “depot” in related work on path planning, and is
conventionally indexed as the first spot, i.e. ;. We assume that
no node is deployed at the depot. Given the node locations D,
we can derive the spot selection vector h; from the sensor
selection I'. A spot is selected for iteration w if any sensor on
any node deployed at that spot is selected in T'[w] i.e.:

N K
hlw] =\ \ Tjxlw]-Dj, 2

j=1k=1
In each iteration, the path of a calibrator is an ordered
sequence that starts from the depot and visits a set of non-
repeating selected spots. It can be represented as a binary

matrix Wy, where W;, ;,=1 if the calibrator visits spot
v;, immediately after visiting v, ; or 0 otherwise. We require
that all mobile calibrators return to depot in the end, i.e.
Zle Wi,= ZzL=1 W 1. The path of calibrator m; in iteration
w is denoted W ;[w]. Each selected spot is visited exactly once
by one calibrator:

M L
SN Wigilw] = by, lo=2,3,...,L 3)
i=1 [=1

The other constraints that the matrices { W} should satisfy are
discussed in Section I'V-B.

B. Definition of the Calibration Cost

We consider three major types of cost: iteration overhead,
movement cost, and calibration cost. The iteration overhead
C} is the cost of all the activities related to an iteration that
are not tied to any specific calibrator, such as preparation,
equipment, and the transport to the deployment, etc.

The movement cost C,, corresponds to the cost associated
with the travel time of the calibrators while moving between
spots. The movement time C., ;[w] of a single calibrator m;
in iteration w can be computed from the map G and the
calibrator’s path W;[w]. It equals the sum of the weights on
the edges between all the consecutive pairs of spots visited by
the calibrator:

L L
Cu,i[w] = Z Z <W11,12,i[w]'G11,12) 4)
Li=1lp=1

The calibration cost C. reflects the time and effort it takes
to conduct sensor calibration while staying at the spots. The
cost C. ;[w] of a specific calibrator m; in iteration w can be
computed based on a given selection of sensors I'jw]. We
indeed know the calibration protocol (and thus duration) that
needs to performed per sensor type. We further assume that the
calibration that happens at the same spot is done in parallel.
Thus, the calibration time that m; spends at spot v; equals the
maximum 7 of all selected sensors at that spot (i.e. I'j ;=1
and D, ;=1). Then C,;w] equals the sum of the calibration
times at all the spots assigned to m;:

L L
Ceslel = Y- (i (DyaTysleln) 32 Wipslel)
=1 N 7 =1
The work load of any calibrator m,; at iteration w is the
sum of his/her movement and calibration time:

Cl' [(JJ} = Cw,i[w] -+ C’C,i[w] (6)

For any iteration, we assume that the maximum work load of
any calibrator is ¢, i.e. C;[w]<é, V(i,w).

The total cost of any iteration w, denoted Cfw], is the
weighted sum of: (a) Cy, the constant iteration overhead, (b)
Cy|w], the total movement time of all mobile calibrators, and
(¢) C.|w], the total calibration time at selected sensors:

C[OJ] = MO'Cit + ,U/w'Cw [w] + :LLC'CC[W] @)

where Cyy[w]=3", Cy ilw] and C.lw]=>", Cc ;[w]. Since we
assume that each spot is only visited once by one calibrator,
the total calibration cost is computed directly from I'[w], i.e.:

L
Cele] = Y max (DT ale]) ®)
=1 7

C. Multi-Sensor Calibration Planning Problem

We now introduce the multi-sensor calibration planning
problem to minimize the average cost of operation over the
maintenance period 7'. The problem is formulated as follows:
Given the time span 7', the map G, the location matrix D and
the sensor presence matrix Q of all the nodes, the calibration
time 73 and the calibration period T} of all the sensor types,
and the initial TTNC matrix F[1_]; find the total number of
iterations 2, and for each iteration w=1, 2, ..., 2, find the time
t,, it takes place, the sensor selection I'[w], and the number
and the paths of calibrations {W{w]|}; such that the average
cost of all iterations over the time span 7" is minimized:

Q
min 3" O(lu], (Wl]})
w=1

s.t. t1=0

I rw] €{0,1}, Yw,Vj,VEk

Wi, 1, ,ilw] € {0,1}, Vw, Vi, Y(l,12)

Fj plw=] >0, Yw,Vj,Vk

Fjklwy] >0, Yw,Vj,Vk

I‘j,k[w] < Qj,k» VW,V]}V%

Flwy] =T[w]oTn + (1 = T[w]) o Flw_], Yw

F[(w+1)_.] = Flws]— min Flw;], Vw

twt1 = tw + minFlwy], Yw

to+minF[Q] > T

)

(10)

N K
hifw] = \/ \/ T klw] - Djg, Vw, VI (11)
j=1k=1

M L
SN Wigilw] = huy, 10=2,3,...,L,Vw
=1 1=1

C;(T[w], W;[w]) < é, VYw,Vi (13)
{W{w]} are valid path(s): constraints in IV-B apply.

(12)

where C'w] is the total cost of iteration w given by Equation
(7), which depends on the sensor selection I'" and the calibra-
tors’ paths {W{w]}, i.e. Clw]=C(T|w], {W]w]}); obviously,
it also depends on problem inputs (i.e. G, D, Q, etc.) which
are hidden for cleaner expressions. The unnumbered con-
straints above are related to the definition of sensor selection
and TTNC in Section III-A. Constraint (10) says the iterations
need to cover the entire time span of 71'; (11) and (12) make
sure all the spots with selected sensors in I' are visited in
{W}; (13) says no calibrator should work for longer than ¢
in any iteration. Additional constraints apply to ensure {W}
are valid path(s).

Algorithm 1: TTNI-driven single-iteration local optimiza-
tion algorithm for the sensor selection planning problem.

1 function solveSSPSingle (G, D, 7, T, Q, F, u, ¢) ;
Imput : 7 - [rg|; T - [Tk] k=1,..., K;
p = {10, fw, fic}
Refer to Section III-A, III-C for other symbols.
Output: T" — Sensor selection matrix.
2 tMin < min{Fj; ; | Q;x=1AF}; >0} ; tMax <~ min T} ;
3 tCandSet < {F} 5, | tMin<Fj ,<tMax} ;
4 Initialize minCostAvg < 400 ; minGamma < null ;
5 for each 71,,,, in tCandSet do
6 '+ Onxk
7
8
9

forjinl,...,N ;kinl,...,K do
Fjvk — (Qj,kzlAFj,k<Tcand 5
forj’inl,.... N ;kinl,...,K do

10
11

12 H «+ {l | 3(],]{5) S.t. Fj7k:1/\Dj7l:1} ; B+ 0p ;
13 for /inl,...,Ldo B+ max;(D;;I';r7k);
14 cost < o -Cy + pe-Ce(D, T, 7) +

L Cr (G, solveMPPGreedy (G, é, H, 3)) ;

15 if (costAvg < cost/Teana) < minCostAvg then

16 L minCostAvg < costAvg ; minGamma < T ;

if Dj’l:Dj/J,Vl then
| Ty« (Qyr pr=1ATw <7k)

-

7 return I' + minGamma ;

The sensor calibration planning problem is NP-hard. It tries
to minimize the total cost of all iterations while the choices of
early iterations can affect and limit the choices of later ones.
Also, the cost of each iteration C[w] involves a movement
time C,[w], which also needs to be minimized, and thus
requires an optimization on the paths of the calibrators, which
is a variant of the Multiple Travelling Salesman Problem
(mTSP) that is known to be NP-hard.

IV. SOLUTIONS AND ALGORITHMS

Our formulation in Equations (9-13) suggests we find I'[w]
(sensor selection) and {W[w]} (path plan) simultaneously for
all iterations. However, we observe the fact that if we know
which spots the calibrators need to visit, we can optimize the
paths to visit them accordingly. Hence, instead of attempting
to minimize Y C/T, for each iteration w, we attempt a two-
phase local optimization on the single-iteration average cost,
Clw]/(tw+1—tw), where we decouple the optimization of I'[w]
and {W/w]}. Accordingly, for each iteration we have a sensor
selection planning phase and a multi-path planning phase.
In the selection planning phase, given the initial TTNC matrix
Flw_], we optimize the sensor selection I', from which we
derive the set of selected spots H={h; | h;=1,Vl}, which is
then used in the path planning phase to decide the number of
calibrators and the optimal path(s) to visit the selected spots.

A. Sensor Selection Planning Algorithms

Leveraging the discrete nature of TTNC and the definition
of TTNI (time to next iteration), we propose the TTNI-
driven local optimization algorithm. The intuition behind this

algorithm is to exhaust the possible values of TTNI (i.e.
tw+1—t,) and find the “cheapest” one to fulfill.

The procedure of the TTNI-driven local optimization is
shown in Algorithm 1. It involves the following steps: (1) De-
termine all the possible values of TTNI that could result from
any possible sensor selection in this iteration. The minimum
TTNI candidate is min{F; x[w_] | @;r=1 A F} ;[w_]>0},
selecting only the sensors that need immediate calibration (Ln
2). The maximum TTNI candidate is min 7}, selecting all
sensors (Ln 2). All values in Flw_] between them become
TTNI candidates (Ln 3). In the worst case, the number of
TTNI candidates is O(N-K) (2) For each TTNI candidate
Teand, tentatively assume it to be the desired TTNI and create
the minimum selection of sensors to meet the TTNI, i.e. let
I r=1if Q;r=1 and F} lw_]<Tcana (Ln 5-8); then add all
the sensors that are co-located with the selected sensors and
that do not induce extra time for calibration (Ln 9—-11, because
their calibration is done in parallel, if it takes a shorter time).
Generating T from T¢,,q takes O(N-K+N-L) time. Compute
the single-iteration average cost from I' (Ln 12-14). (3) Select
the TTNI candidate that gives the minimum average cost (Ln
16), and its corresponding I" is the output of the algorithm. The
worst-case running time excluding the time used to compute
or estimate the movement time, is O(N2-K2+N2.K-L).

If during step (2) we are able to compute the optimal
paths of calibrators, we will compute the best cost evaluation
for each selection and find the local optima. Unfortunately,
multi-path planning is also NP-hard. We then propose two
heuristics: a fast nearest-neighbor-based greedy algorithm, and
an improved genetic algorithm (GA). During sensor selection,
we use the faster greedy algorithm to estimate the movement
cost; once the selection is done, we use GA to generate the
final path(s) for the iteration.

B. Multiple-Path Planning Algorithms

The multi-path planning problem for a specific iteration
w refers to a sub-problem in our two-phase local optimization
solution to the sensor calibration planning problem. The ob-
jective is to generate a set of paths {W{w]} of minimum cost
(i.e. movement time C,[w]) for the selected spots yielded by
the sensor selection I'[w]. It is a variant of the classic mTSP
or VRP: we determine the number of calibrators based on the
demand instead of having the number m of travellers given, as
in mTSP. Also, evaluating the calibrator workload constraint
involves the movement time of individual calibrators, which
adds to the complexity of solutions.

Hence, we derive the following mixed-integer-programming
(MIP) formulation of the multi-path planning problem based
on a flow-based three-index MIP formulation of mTSP [25],
adding appropriate modifications to match our assumptions
and constraints: Given a map G, the location of the nodes D,
the sensor selection I, and the calibration time 75, Vk; find
Wirxrxum (represented in a more general form that could
contain calibrators with no assignment) and helper variables
Urxm to

L L M
min Z Z (Gzl,l2 'ZVVll,lg,i> (14)
Li=1ly=1 i=1
st. Wi, € {0, 1}, Vi,V(ll,lg)
Wi =0, VI=2,3,...,L,Vi
S Wigyi =1, Vi
Zllel Wit — Zizl Wi, =0, Vi,V
Zﬁzl S Wiyt =, Vo (15)

up; =2, ViVl

Uy 5 — Uy 5+ 1-— (L — 1)-(1 — Wll,l2,i) < 0,
Vi,V(ll,lg)

S S Wi (Gl + T0,) <&, Vi (16)

Where Wy, ;, ;=1 if calibrator m; visits spot v;, immediately
after spot vy, ; or 0 otherwise. M is the maximum number of
calibrators; assuming we always have enough calibrators, L
would be an effective upper bound of M to be used in solvers.
The unnumbered constraints are related to the construction of
multiple paths. Constraint (15) makes sure all selected spots
are visited by exactly one calibrator; (16) enforces the maxi-
mum workload of calibrators, where Y; is the total calibration
time spent at spot v, i.e. T;{w] = max; x(D;;-Tj xw] 7).

This formulation allows us to apply MIP solvers directly.
However, the problem is NP-hard; the number of independent
variables and the number of constraints in this MIP formula-
tion are both in the order of O(L?), resulting in a huge solution
space. It is hard for any MIP solver to optimally solve the
problem in a reasonable amount of time [25]. In particular, we
tried two widely used solvers: GLPK (GNU Linear Program-
ming Kit, open-source — https://www.gnu.org/software/glpk/)
and Gurobi (commercial software — http://www.gurobi.com/).
None of the two solved the problem in less than 48 hours
for L>15. To solve the problem at larger scale, we propose
two heuristics: a greedy algorithm derived from the nearest
neighbor heuristic of traditional TSP, and an improved genetic
algorithm (GA) based on the one proposed by Sedighpour,
et al. [26] for mTSP. For a clean design of the algorithms,
after the completion of the sensor selection planning phase,
the planning framework computes the set of selected spots
H and the calibration time 3 at these spots from the sensor
selection matrix I'.

1) Nearest-Neighbor-Based Greedy Heuristic: The nearest
neighbor algorithm for TSP starts with a tour containing only
one spot. At each step, it determines that the next spot to visit
as the one that is closest to the last visited spot, and loops
until all the spots are visited.

Inspired by this straightforward TSP algorithm, we derive
our greedy algorithm for the multi-path planning problem
shown in Algorithm 2 as follows: (1) Start with a set of empty
paths (i.e. all the calibrators stay at the depot) and the set of
all selected spots H. (2) At each step, for every unvisited spot,
compute the extra travel and calibration time yield by adding
it to the end of the path of each mobile calibrator as long as

Algorithm 2: Nearest-neighbor-based greedy algorithm
for the multi-path planning problem.

1 function solveMPPGreedy (G, ¢, H, 3) ;
Input : G — Map; ¢ — Maximum workload;
H — Set of selected spots;
B — Vector of calibration time at selected spots.
Output: {W} — Set of paths.
2 Initialize pathSet < [] ;
3 while H is not empty do
4 minlnc < +o0 ; minSp < minPath < null;
5 for each path in pathSet ; last < path[—1] do
6 oldTime < getMoveTime (path) + 3, . 31
7
8
9

for each sp in H do
dCw < Glast, sp] + G|[sp, 1] — G[last, 1] ;
if oldTime + dCw +f,, < ¢ then

10 if dCw < minInc then
11 minlnc < dCw ;
12 minSp <— sp ; minPath < path ;

13 if minInc is finite then minPath.append (minSp) ;
14 else

15 for each sp in H do
16 if (dCw + G[1, sp] + G|[sp, 1]) < minInc then
17 | minlnc < dCw ; minSp « sp ;

18 | newPath < [minSp] ; pathSet.add (newPath) ;
9 | H .del (minSp) ;
return {W} « convertPathVecToMatrix (pathSet) ;

[
>

the calibrator is not overloaded. Pick the spot-calibrator pair
that induces the least additional movement time. Note that the
spot could be added to an old calibrator (Ln 5-13) or a new
calibrator (Ln 15-18). (3) Loop until all the spots are visited
(Ln 3, 19). Note: Our actual implementation of this algorithm
caches the movement and calibration time associated with each
calibrator to reduce redundant computation, so the worst-case
running time of this algorithm is O(L3).

2) Improved Genetic Algorithm (GA): We design our ge-
netic algorithm (GA) based on the mTSP GA solution of
[26]. Features are added to address the peculiarities of our
MPP formulation, i.e. the variable number of calibrators, the
workload constraint, and the map (i.e. a directed-graph).

A chromosome is an integer vector that is made of two
parts: a permutation of all the selected spots (1st half) and an
assignment mapping the spots to mobile calibrators (2nd half).
If the number of selected spots is |H|=L’, a chromosome will
have length 2L’. The assignment (2nd half) is represented by
the number of spots visited by each calibrator, so these integers
should all be in range [0, L’] and sum up to L’. For example,
chromosome (2,4, 5,6, 3,2,3,0,0,0] means L'=>5 and that m;
will visit spots 9, 14, and mo will visit v5, vg, V3. The fitness
is the negative of the total movement time of all the mobile
calibrators, and the selection is done by a standard scaled-

fitness proportional selection.

The initial population is composed of randomly generated
individuals. The permutation is performed by a uniformly
random permutation generator, and the assignment is done by
uniformly and randomly picking an integer and subtracting it
from the total number of selected spots until none is left. The
crossover is done by applying a standard “order crossover”
on the first half of the chromosome.

Because of the variable number of mobile calibrators, we
design three helper functions that apply to chromosomes: (a)
compress: shift all zeros in the assignment section to the
end and non-zeros values to the beginning; (b) split: check if
any assignment (=2 spots) leads to an overloaded calibrator,
randomly split it into two calibrators, and loop until none is
found; (c) merge: check if there exists a pair of assignments
that can be merged into one without overloading the calibrator;
then merge the first pair found. Among the three, compress
and split are applied to every newly-generated chromosome
during population initialization, mutation, and crossover, while
merge is applied as one type of mutation.

Apart from “merge”, there are three other types of mu-
tation: (a) two-point swap, (b) segment reversal, and (c) 3-
opt local optimization. Every time a mutation is triggered, we
randomly pick one of the four types of mutation functions. (a)
and (b) are straightforward. 3-opt [27] is a local optimization
for TSP, which tries to break a tour into three segments by
removing three edges, and reconnect the three segments into
a new but shorter tour. 2-opt is a commonly used local opti-
mization for TSP on undirected graphs, but an odd numbered
opt is required for digraphs to avoid reversing any segment,
which makes it faster to compute the new movement time.

Finally, the tunable parameters such as the population size,
elite-keeping size, and the termination conditions are assigned
by the framework according to the problem size (i.e. L').

V. VALIDATION

We evaluate the performance of our proposed multi-sensor
calibration planner using realistic data derived from testbeds
and present the steps we are taking towards a usable system

TABLE I
EXPERIMENTAL SETUP FOR THE PERFORMANCE EVALUATION.
Input Data Indoor Outdoor
Normal Emergency
Map L Num. of Spots 60 63
G Pairwise Dist.2 <53 sec <73 min
K Num. of Types 10 8
Sensor | 7 Calib. Time 1-30 min 0.25-1 min
T Calib. Period 14-91d 7-91d 28-123 d
Nodes N Num. of Nodes 100 (varies if independent variable)
Sensor Presence 50 (varies if independent variable)
¢ Max. Workload 2 hours 4 hours
g:f; p Coefficients Cy=10000, pt0=1 ptu=5, pre=1
T Maintenance P. 360 days

2 Pairwise distance correspond to the shortest traveling time.

10000 — 6000

7500

5000

Average cost

Selectors
- Al
- Local

2500
TTNI-driven

Local bnd.

Average move. time per it. (sec;
8
]
8

0 - Minimal
0 50 100 150 200 0 50

Number of nodes

(a) Average cost vs. number of nodes.

Number of nodes

(b) Avg. move. time (s) per iter. vs. numb. of nodes.

Selectors
0.20 |+ Al
- Local

TTNI-driven
Local bnd.

015 Minimal

Selectors
- Al

- Local
- Minimal 0.00

100 150 200 0 50 100 150 200
Number of nodes

Selector running time (sec;
=4 o
= =
& 5

TTNI-driven
Local bnd.

(c) Mean running time (sec) vs. number of nodes.

Fig. 3. Impact of the number of nodes on the sensor selection algorithms in an indoor setup, with sensor presence rate >, Q/(N-K)=0.5.

(a) DBH 2nd floor; data set contains all six (b) Paris area of 10 km?;
floors; real and synthetic spots. synthetic spots.

Fig. 4. Smart space structure and spot location used in evaluation.

for calibration planning This includes modules to facilitate the
modeling of the (indoor/outdoor) environment and to provide
navigation guidance to the calibrators (via an Android app).
Experimental Setup: We conduct a series of evaluations
using three sets of input data. The two first involve the
instrumented building at UC Irvine (Figure 4a) we discussed
in Section II, which is used for everyday monitoring (normal
condition) and for supporting emergency operations when
needed. The desired calibration frequency is a parameter that is
learned from empirical study and that depends on the context.
We consider the actual deployment in our real testbeds and
generate additional spots (with sensors and nodes) using a
similar pattern. Using the service we present in Section V, we
synthesized the third data set that relates to an outdoor urban
environment in which sensors are placed to monitor noise and
air quality. The parameters are summarized in Table 1.

We compare our sensor selection with two naive sensor
selection strategies that aim at “always selecting all sensors”
(regardless of their TTNC) and “only selecting the minimal
set of sensors” (i.e. those we must calibrate because their
TTNC reaches 0). In addition, we also investigate two simple
selection strategies. The former consists in selecting all sensors
that are co-located with the sensors that form the minimal set
(“local’”). The latter consists in only selecting the sensors that
can automatically calibrate with each other without human
intervention and that henceforth do not induce additional
calibration time (“local bounded’). For multi-path planning,

we evaluate the performance of two MIP solvers (GLPK and
Gurobi), our two path planning heuristics (NN-based greedy
and GA), and a naive strategy that sends one calibrator to each
spot and that should give the highest cost. Algorithm running
time is evaluated on the OpenLab cluster of Dept. Computer
Science at UCI, where each computing node has 2x Quad-core
Intel Xeon 3.0GHz CPU E5450 CPUs.

Indoor vs. Outdoor Results: In an indoor environment (Fig-
ure 3), our algorithm (TTNI-driven sensor selection and GA-
based multi-path planning) always result in a lower average
cost for N ranging from 5 to 200. Compared to the naive
sensor selection strategies, such as “selecting all sensors”
and “selecting the minimal set of sensors” (still considering
GA-based multi-path planning), our algorithm combination
provides up-to 30% improvement in the long-term average
cost. Note that even though our algorithm does not always end
up with the lowest cost per iteration (Figure 3b), it makes a fair
trade-off between the cost and the time (between iterations).
Figure 3c shows that the time spent to select sensors is short —
less than 1 sec for a reasonably complex building incorporating
200 nodes and 60 spots. The same trend also applies in the
outdoor environment (Figure 5), where the distances between
spots are significantly longer (Table I). As the spatial span of
the setup grows, the difference among the algorithms becomes
more dramatic (note the different y-scale in Figures 3a,3b and
5a,5b). Certain naive approaches are very sensitive to this
change (Figure 5b, “minimal” and “local bounded”), while
our algorithm shows stable performance in both settings.

Normal vs. Emergency Condition Results: Having demon-
strated the effectiveness of our algorithm in indoor and outdoor
settings, we further study the performance of our approach
in an emergency scenario where the calibration requirements
of certain sensor types are increased (Figures 6a and 6c,
note the difference in y-scale). When calibration is required
more frequently for some sensors, the naive/simple approaches
suffer from a big increase in average cost, especially when
the sensors are deployed densely (3 Q/(N-K)>0.5), while
the performance of our algorithm and “local bounded” are
less affected. We also notice that unlike the simpler ap-
proaches (“local bounded” or “minimal”), our TTNI-driven
sensor selection algorithm avoids the desynchronization of
the periodical calibrations, while the “local bounded” strategy
does so with a small number of sensors (Figure 6b).

Scalability Results for the Multi-Path Planning: Figure 7

20000

(sec)

30000

15000

ime per it.

20000

15000

k7 k7
8 8
) £ 20000 & 10000
& 10000 S &
] >]
> o >
E W g 2 y
5000 g,10000 5000
Selectors g Selectors Selectors
-~ Al # TTNI-driven + Local % - All # TTNI-driven -+ Local -~ Al # TTNI-driven + Local
0 Local bnd. -+ Minimal 0 Local bnd. - Minimal 0 Local bnd. - Minimal
0 50 100 150 200 0 50 100 150 200 0 200 400 600 800

Number of nodes

(a) Average cost vs. numb. of sensors IN; sensor
presence »_ Q/(N-K)=0.5; outdoor scenario.

Number of nodes

(b) Average movement time (sec) per iteration vs.
N; > Q/(N-K)=0.5; outdoor scenario.

Number of sensors

(c) Average cost vs. number of sensors > Q;
N=100; outdoor scenario.

Fig. 5. Evaluation of the sensor selection algorithms in an outdoor scenario.

= 20000
7500 g /
k=2
5 10 —
5 g M‘_‘_‘_“ 4 15000
8 H 8
S 5000 2 S
=3 3 =)
g Z € 10000
g s e
I g5 I
2500 Selectors =) Selectors 5000 Selectors
- Al # TTNI-driven § -+ All # TTNI-driven - Al # TTNI-driven
-+ Local Local bnd. = - Local Local bnd. -+ Local Local bnd.
0 - Minimal 0 - Minimal 0 - Minimal
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

Number of sensors

(a) Average cost vs. number of sensors Y Q;
normal scenario.

Number of sensors

(b) Mean interval (day) between iterations vs. num-
ber of sensors; normal condition.

Number of sensors

(c) Average cost vs. number of sensors; emergency
condition.

Fig. 6. Impact of the number of sensors on the sensor selection in an indoor environment containing 100 nodes.

80001 path planners Path planners Path planners
Each = GA Each & GA g Each = GA
§500 > Greedy # GLPK 9|+ Greedy # GLPK f > Greedy # GLPK
® - Gurobi 2 |+ Gurobi £ 40|« Gurobi
g =
g : 2
g» 4000 5° £
g 2 & 20
€ 2
£ S3 5
5 2000 * . z g
. £
o
0 0 0
4 6 10 12 4 6 10 12 4 6 10 12

8
Number of spots

(a) Movement time vs. number of spots.

Number of spots

(b) Number of calibrators vs. number of spots.

8
Number of spots

(c) Running time (sec) vs. number of spots

Fig. 7. Scalability of the multi-path planning solvers and proposed heuristic algorithms.

compares the performance of multi-path planning algorithms
for the number of spots L<12: GA provides close-to-optimal
solutions but takes 8—10 sec for L=12 (20-60 sec for L=60);
the greedy heuristic is much faster (approx. 0.5 sec for L=60),
which makes it suitable as an estimator during the sensor
selection planning. GLPK and Gurobi (i.e. the MIP solvers)
could not terminate within 48 hours for L>15 so we aborted.

Towards a Usable System: Creating a calibration planning
service is not trivial. In addition to the algorithm for planning,
we are implementing a service to enable flexible calibration.
To support usability, we have implemented a toolkit that serves
to generate 3-dimensional maps and provides navigation guid-
ance to the mobile calibrators. We create the 3-D navigable
maps using OpenStreetMap (www.openstreetmap.org), which
provides a basemap of the outdoor environment, e.g., roads
(lines), junctions (points), buildings (polygons). The basemap
is further edited (Figure 8a) so as to (i) detail the inner
structure of the buildings of interest (if any), and (ii) layer a
number of features including the paths accessible in the indoor
environment. To design the inner structure of the building, we
rely on JOSM (josm.openstreetmap.de). Following, we extract

9
% o Continue on to Spot 2.
o

(b)

Fig. 8. (a) Modeling indoor space in a building and (b) Mapping of a
indoor/outdoor space: Spots (green markers) are placed; nodes (red markers)
compose a spot and communicate through wireless links (blue lines).
a representation of the connection graph from the resulting
map using GraphHoper (www.graphhopper.com). This graph
is composed of edges corresponding to streets, roads as well
as indoor-pedestrian paths, and nodes representing junctions.
The next step consists in placing on the map, the spots that

should be visited along with the nodes and the related sensors.
The wireless connections among sensing nodes are also mod-
eled to inform the propagation of calibration parameters. The
map are exploited by the Android app that we implemented for
assisting the mobile workers. The app computes the shortest
path (avoiding obstacles) between any 2 spots and provides
this information to the multi-sensor calibration planner. For
instance, with 60 spots and 77 nodes equipped by 188 sensors
mapped over an urban area of 10 km?, the resulting connection
graph is generated in 2.967s. This graph, which contains 8768
edges (e.g., streets) and 5661 vertices (e.g., junctions), is
further used to compute the paths between any two spots; such
a computation takes in average 0.0195s for an average distance
separating two spots of 1387 meters. Relying on the multi-
sensor calibration planner, the mobile app further provides
navigation guidance to the calibrators (Figure 8b).

VI. CONCLUSION

Effective deployment of IoT remains a challenging task with
a multitude of pitfalls: once deployed, sensors are subject
to drifts, bias and thereby fail to provide the expected and
meaningful data. Cost-effectively planning the on-site cali-
bration of IoT devices helps in the sustainable long term
operation of deployments. Our work focuses on collaborative
and distributed maintenance of an IoT-based system. We build
on our experiences in deploying sensors over smart spaces and
on addressing the calibration tasks to enhance the quality of
the gathered observations. We frame multi-sensor calibration
planning as an optimization problem where we propose a
two-phase iterative local optimization approach to determine
(a) how many calibration iterations are necessary, (b) which
sensors should be calibrated at each of these iterations, and (c)
the number of mobile calibrators that are required (as well as
their respective calibration paths), such that the average cost
of all iterations is minimized and under the constraint that the
calibrators should not be overloaded. Our evaluation shows
that the proposed algorithms solve the calibration planning
problem effectively compared to naive/simple solutions.
Future Work: Introducing a service to facilitate large-scale
calibration in IoT deployments is promising; while our initial
studies demonstrate the value and feasibility of this approach,
long-term studies with an end-to-end system will help adapt
and fine-tune the calibration process for different applications
and external dynamicity.
Acknowledgement: The authors thank all members of the ISG
and DSM groups at UCI for the valuable discussions. We also
thank Inria for supporting the MINES associate team. This
project is funded under NSF award CNS-1450768 and NIST
award 70NANB17H285.

REFERENCES

[11 G. Kortuem, F. Kawsar et al., “Smart objects as building blocks for the
internet of things,” IEEE Internet Computing, vol. 14, no. 1, 2010.

[2] D. Uckelmann, M. Harrison et al., An Architectural Approach Towards
the Future Internet of Things. Springer, 2011.

[3] O. Vermesan and P. Friess, Eds., Internet of Things: Converging
Technologies for Smart Environments and Integrated Ecosystems, ser.
Publishers Series in Communication. River, 2013.

[4]
[5]
[6]
[7]
[8]
[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]

[20]

[21]
[22]
(23]
[24]
[25]

[26]

[27]
(28]
[29]
[30]
(31]
(32]
[33]

[34]

[35]

L. Atzori, A. lera et al., “The internet of things: A survey,” Comput.
Netw., vol. 54, no. 15, Oct. 2010.

J. A. Stankovic, “Research directions for the internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 1, 2014.

D. Stone, “Calibration and linear regression analysis: A self-guided
tutorial.”

S. Nesamony, M. K. Vairamuthu et al., “On optimal route of a calibrating
mobile sink in a wireless sensor network,” in IEEE INSS, 2007.

S. Hachem, V. Mallet et al., “Monitoring Noise Pollution Using The
Urban Civics Middleware,” in IEEE BigDataService, 2015.

V. Issarny, V. Mallet er al., “Dos and Don’ts in Mobile Phone
Sensing Middleware: Learning from a Large-Scale Experiment,” in
ACM/IFIP/USENIX Middleware, Dec. 2016.

R. Ventura, V. Mallet et al., “Evaluation and calibration of mobile phones
for noise monitoring application,” Journal of the Acoustical Society of
America, vol. 142, no. 5, 2017.

——, “Assimilation of mobile phone measurements for noise mapping
of a neighborhood,” Journal of the Acoustical Society of America, vol.
144, no. 3, 2018.

F. Sailhan, V. Issarny et al., “Opportunistic multiparty calibration for
robust participatory sensing,” in JEEE MASS, 2017.

K. Benson, C. Fracchia et al., “SCALE: Safe community awareness
and alerting leveraging the internet of things,” IEEE Communications
Magazine, vol. 53, no. 12, 2015.

M. Y. S. Uddin, A. Nelson et al., “The scale2 multi-network architecture
for iot-based resilient communities,” in JEEE SMARTCOMP, 2016.

M. Rahman, H.-J. Hong er al., “Adaptive sensing using internet-of-things
with constrained communications,” in Proceedings of the 16th Workshop
on Adaptive and Reflective Middleware. ACM, 2017.

M. Rahman, A. Rahman et al., “An adaptive IoT platform on budgeted
3g data plans,” Journal of Systems Architecture, 2018.

S. Mehrotra, A. Kobsa et al., “Tippers: A privacy cognizant iot environ-
ment,” in IEEE PerCom Workshops. 1EEE, 2016.

G. Barrenetxea, F. Ingelrest et al., “The hitchhiker’s guide to successful
wireless sensor network deployment,” in ACM SenSys, 2008.

K. Ni, N. Ramanathan et al., “Sensor network data fault types,” ACM
Transactions on Sensor Networks, vol. 5, no. 3, 2009.

M. S. Stankovic, S. S. Stankovic er al., “Asynchronous distributed
blind calibration of sensor networks under noisy measurements,” /EEE
Transactions on Control of Network Systems, 2016.

Y. Wang, A. Yang et al., “A deep learning approach for blind drift
calibration of sensor networks,” IEEE Sensors Journal, 2017.

D. Hasenfratz, O. Saukh et al., “On-the-fly calibration of low-cost gas
sensors,” Wireless Sensor Networks, 2012.

O. Saukh, D. Hasenfratz et al., “Reducing multi-hop calibration errors
in large-scale mobile sensor networks,” in ACM IPSN, 2015.

K. Fu, W. Ren et al., “Multihop calibration for mobile sensing: K-hop
calibratability and reference sensor deployment,” in INFOCOM, 2017.
T. Bektas, “The multiple traveling salesman problem: an overview of
formulations and solution procedures,” Omega, vol. 34, no. 3, 2006.
M. Sedighpour, M. Yousefikhoshbakht et al., “An effective genetic
algorithm for solving the multiple traveling salesman problem,” Journal
of Optimization in Industrial Engineering, no. 8, 2012.

K. D. Boese, Cost versus distance in the traveling salesman problem.
UCLA Computer Science Department Los Angeles, 1995.

J. Thelen, D. Goense et al., “Radio wave propagation in a patatoe field,”
in Ist workshop on wireless network measurement, 2005.

R. Tan, G. Xing et al., “Adaptive calibration for fusion-based wireless
sensor networks,” in INFOCOM, 2010.

F. Sailhan, V. Issarny et al., “Opportunistic multiparty calibration for
robust participatory sensing,” in JEEE MASS, 2017.

R. Vaisenberg, S. Ji et al., “Exploiting semantics for sensor re-calibration
in event detection systems,” in Proc. of SPIE, vol. 6818, 2008.

E. Miluzzo, N. D. Lane et al., “Calibree: A self-calibration system for
mobile sensor networks,” in DCOSS. Springer, 2008.

L. Balzano and R. Nowak, “Blind calibration of sensor networks,” in
ACM IPSN, 2007.

N. Ramanathan, L. Balzano et al., “Rapid deployment with confidence:
Calibration and fault detection in environmental sensor networks,”
Center for Embedded Network Sensing, 2006.

J. Gupta, et al., “Comparison of some approximate algorithms proposed
for traveling salesmen and graph partitioning problems,” in ICIoTCT,
2018.

