
Spatiotemporal Scheduling for Crowd Augmented
Urban Sensing

Qiuxi Zhu, Md Yusuf Sarwar Uddin, Nalini Venkatasubramanian
University of California, Irvine

Email: qiuxiz@ics.uci.edu, yusuf.sarwar@uci.edu, nalini@ics.uci.edu

Cheng-Hsin Hsu
National Tsing Hua University

Email: chsu@cs.nthu.edu.tw

Abstract—In urban environments, mobile crowdsensing can be
used to augment in-situ sensing deployments (e.g. for environmen-
tal and community monitoring) in a flexible and cost-efficient
manner. The additional participation provided by crowdsensing
enables improved data collection coverage and enhances timeli-
ness of data delivery. However, as the number of participating de-
vices/users increases, efficient management is required to handle
the increased operational cost of the infrastructure and associated
cloud services – exploiting spatiotemporal redundancy in sensing
can help cost-efficient utilization of resources. In this paper, we
develop solutions to exploit the mobility of the crowd and manage
the sensing capability of participating devices to effectively meet
application/user demands for hybrid urban sensing applications.
Specifically, we address the spatiotemporal scheduling problem
to create high-resolution maps (e.g. for pollution sensing) by
developing a common framework to capture spatiotemporal
impact of multiple sensor types that generate heterogeneous data
at different levels of granularity. We develop an online scheduling
approach that leverages the knowledge of device location and
sensing capability to selectively activate nodes and sensors. We
build a multi-sensor platform that enables data collection, data
exchange, and node management. Prototype deployments in
three different campus/community testbeds were instrumented
for measurements. Traces collected from the testbeds are used
to drive extensive large scale simulations. Results show that our
proposed solution achieves improved data coverage and utility
under data constraints with lower costs (30% fewer active nodes)
than naive approaches.

I. INTRODUCTION

A new wave of information systems has been enabled by
the gigantic improvements in the capabilities of embedded
systems and mobile computing platforms, developments in
low-energy sensing technologies, the expanding coverage of
wireless communication infrastructures, and the rapid growth
of cloud-based solutions and services. The rising number of
connected personal devices have led to a tighter engagement
of users and communities through Internet-of-Things deploy-
ments and participatory crowd-sensing applications - this is
indeed one of the key goals of smart city efforts around the
world. Applications such as urban pollution monitoring [1]–[6]
are beginning to leverage these technology trends.

While instrumenting community infrastructures (e.g. street
lamps, traffic lights, buildings, roads) with IoT sensing/ac-
tuation capabilities provides awareness of current conditions,
deployment limitations of in-situ devices lead to the lack of
ubiquitous coverage. Our goal is to augment in-situ deploy-
ments in communities by leveraging crowd-sourced sensor

information from mobile users who are “on-the-go” in urban
areas. Several challenges arise in enabling mobile crowd-
sensing as flexible and cost-efficient extensions to existing
stationary deployments - scalability and heterogeneity are two
key issues. As deployments scale in the number of users and
devices, there is increasing redundancy in data traffic, conse-
quently increasing operational cost and resource constraints.
Coordination of sensing tasks across multiple devices with
diverse sensing capabilities and availabilities is required to
manage the hybrid sensing [7] in an efficient manner.

One promising solution for the management of a hybrid (i.e.
in-situ and mobile) environment is to leverage global knowl-
edge (e.g. location and sensing capability of all participating
devices) to selectively assign sensing tasks to participants so as
to reduce the level of redundancy, while maintaining relatively
high accuracy and spatiotemporal resolution of the collected
data. Joint scheduling in such a hybrid configuration requires
uniform concepts that capture (a) the diverse spatiotemporal
needs of sensing applications and their associated costs, (b) the
heterogeneity of devices (sensor types with varying spatial ac-
curacy and compute capabilities), and (c) sensing phenomena
that vary in their spatiotemporal extent and dictate the urgency
of communication to target recipients.

In this paper, we address a novel spatiotemporal scheduling
problem for crowd augmented urban sensing that supports
the monitoring of multiple events in a community. We unify
concepts across both in-situ and mobile sensors by defining
the notion of spatiotemporal impact of sensor readings. We
determine how to effectively assign sensing workloads to each
participant in order to reduce data redundancy using spatial
and temporal knowledge. The key idea is to leverage the
knowledge of (a) application requirements (e.g. air pollution),
which can be defined by application maintainers and commu-
nity users; (b) device heterogeneity and mobility (collected at
runtime); and (c) spatiotemporal properties of target variables
(e.g. concentration of air pollutant), which can be obtained
from theoretical models and in-field measurements. Using this
knowledge, we propose an online scheduling technique that
periodically generates globally optimized plans for all devices.

Application Scenario and Problem Description: To lend
focus to the problem development and prototype environment
design, we employ a targeted use case – community-scale
pollution monitoring. Pollution monitoring has been a hot
topic for decades, and it is increasingly important in densely

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE

Fig. 1. An urban crowdsensing scenario where we selectively activate sensors
on participating nodes to reduce redundancy while providing good coverage.

populated urban areas. Studies [8]–[11] have shown significant
correlation between urban air pollution and mortality, raising
public awareness and concern [12]. Traditionally, urban air
pollution has been captured by city-owned air quality moni-
toring stations. While they help us to collect data with higher
accuracy, they are expensive to setup, operate, and maintain.
Given the limited number of such stations [1], information is
often at coarse levels of granularity. Today, with community
IoT deployments and crowd-owned mobile devices, pollution
data can be gathered at much higher spatiotemporal resolutions
to support analytical and decision making applications. In-
situ IoT deployments are valuable with better connectivity,
power supply, and sometimes accuracy, while mobile devices
augment the IoT deployment with extended coverage and
additional sensing capability. We strive to create a uniform
framework that leverages the characteristics of both modalities.

Our aim (i.e. applications) is to create high-resolution maps
for multiple commonplace pollution modes (e.g. air, noise,
trash), as well as other dynamically evolving phenomena
(e.g. traffic, Wi-Fi) in urban environment, especially in a
community-wide setting. The pollution monitoring system
setup is as follows: Sensor nodes are equipped with varying
types of sensors for pollution mapping. Each pollution type
(e.g. air, noise, trash) can be characterized using spatiotempo-
ral resolution requirements; sensors for these pollution types
have a spatiotemporal impact (i.e. range and duration of sensor
data validity) (Fig. 1). The task at hand is to determine how
to control data collection to meet the requirements. A regional
edge server is deployed for centralized control of devices and
simple analyses on raw data. Due to practical bounds on the
resources available at the edge server and sensors (e.g. CPU,
bandwidth), our plan is to activate a subset of the sensors at
any time while retaining the quality of the maps we create, i.e.
the sensing activity of each node must be carefully scheduled.

More specifically, given information on the location and
sensing capability of all participating nodes at any time, and
the spatiotemporal characteristics of all pollution types, our
goal is to determine which sensors on which nodes should be

activated during a given time period, so that (a) the generated
pollution map maximizes the space-time coverage; (b) the total
amount of data received by the server is bound; and (c) the
total number of workers stays low, so the system suffers from
less uncertainty and energy overhead. This spatiotemporal
scheduling problem is challenging for the following reasons:
(a) Crowd participants move at will; we cannot control their
movement or create plans a priori; (b) The varying resolution
requirements from applications and the heterogeneous nature
of crowd-owned devices make it hard to decouple them during
scheduling. In this paper, we formalize this spatiotemporal
scheduling as a constrained multi-objective optimization prob-
lem with discrete space-time representation.

Key Contributions of This Paper: Computing an optimal
spatiotemporal plan for activating sensors and devices requires
knowledge of all nodal states – this is infeasible given un-
predictability of node movements in the future. Hence, we
propose an online planning approach, where a broker (cloud
resource or logically centralized edge server in a region) col-
lects information from nodes periodically and generates an ac-
tivation schedule for the near future. Key contributions of this
paper include: (a) Formalization of spatiotemporal scheduling
as a constrained multi-objective optimization problem (Section
II), which is NP-hard. (b) Design of two online scheduling
algorithms (Section III) that compute sensor activation plans it-
eratively using states of all nodes and corresponding historical
data. (c) Development of prototype pollution sensing platforms
(in-situ and mobile)with measurement studies in three real
community testbeds (Section IV). (d) Extensive evaluation of
proposed planning algorithms in realistic simulations driven
by the measurements (Section V) to study performance in
community/city-wide settings.

II. SPATIOTEMPORAL SCHEDULING IN HYBRID SETTINGS

In this section, we define frequently used terms and nota-
tions and model the system under appropriate assumptions.
Based on the system model we formulate the spatiotemporal
scheduling problem as a multi-objective optimization problem.

A. Notations and Assumptions

The area of interest (i.e. community/city) is discretized into
cells. Cells can have arbitrary shapes, but we use square cells
for simplicity. Cells are denoted by ci, i = 1, . . . ,M , where
M is the total number of cells in the area of interest. The
spatial distance between cells is represented by an M -by-M
distance matrix S, where Si1,i2 denotes the distance between
the geometric centers of cells ci1 and ci2 .

A data type represents a class of sensor data we would
like to collect in this area. Data types are written as dk, k =
1, . . . ,K, where K is the total number of data types of interest.
We assume each data type requires a different type of sensors
for collection. For simplicity, we also assume that we use the
same type of sensor for the same data type. Hence there is a
one-to-one mapping, where dk also refers to its corresponding
sensor type. The framework is extensible to complex settings
where different sensors types are used for the same data type.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

Each sensor type has its characteristics on temporal and spatial
resolution. The temporal characteristic of dk is captured by the
temporal impact function hTk (t)∈[0, 1], t>0, which defines
the contribution of a data point collected in the same cell,
but time t ago. Similarly, the spatial characteristic of dk is
captured by the spatial impact function hSk (s)∈[0, 1], s>0,
for contribution of a data point collected at the same time,
but from a different cell that is distance s away. The selection
of impact functions is application dependent; the framework
should provide interfaces for applications to pass through their
impact functions. Typical impact functions have some basic
properties, such as h(0)=1 (full local impact), h(x1)6h(x2)
for x1<x2 (monotonicity), and limx→∞ h(x)=0. For example,
in our environmental sensing scenario, we use exponential
(spatial) and threshold-based (temporal) functions. Different
types of sensors may generate data at different rates. Sensor
of type dk generates data at an average rate rk. Each data type
dk is given an application-dependent weight pk, s.t.

∑
pk = 1.

A node represents a participating device. It could be an
in-situ sensing platform deployed in the community/city, or a
crowd-owned mobile device roaming in the same area. A node
is described by nj , j = 1, . . . , N , where N is the total number
of nodes. We assume we have no control over the location
or movement of nodes. For consistency, we always use i, j,
and k for indexes of cells, nodes, and data types, respectively.
Each node has a subset of sensors present on-board. The
presence of all sensor types on the nodes is represented by
an N -by-K binary presence matrix B, where Bj,k=1 iff nj
has the sensor of type dk. In our hybrid settings, we do not
differentiate between in-situ and mobile nodes explicitly in
notations. Instead, we focus on node capabilities (i.e. sensors
that are present on each node and their impacts).

The placement (i.e. location) of nodes is represented by an
N -by-M binary placement matrix G(t), t>0. Gj,i(t)=1 iff
nj is in ci at time t. We assume that the placement of all the
nodes is observable, i.e. G(t) is known at time t.

We assume each sensor on each node can be activated
individually at any time. A plan describes which sensors on
which nodes should be activated at what time. A plan is
an N -by-K binary matrix W(t), where t>0, Wj,k(t)6Bj,k,
Wj,k(t)=1 iff dk on nj is active at t. A sensor generates data
only when it is active. We say a node nj is active at t, if at
least one sensor on nj is active at t.

In real world deployments, planning can occur at any time
or when any change occurs; the associated data patterns gen-
erated and accumulated can vary. For simplicity, we assume
a discrete representation and operation in our formulation,
where time is discretized into time frames of length T , so
that planning only occurs in intervals of t = n·T, ∀n∈N. The
activation states of sensors, which is specified in the plan,
persist throughout each time frame n. In this way, sensors can
only be activated or deactivated per time frame. If an instance
of dk is active in one frame, then it generates rk·T amount of
data for that frame. In the discrete representation, we denote
the discrete-time values by G[n], etc. where G[n]=G(n·T).
We assume G(t) stays unchanged throughout any frame n.

B. Definition of Benefit, Cost and Constraints

Benefit: Our goal is to maintain up-to-date heatmaps. We
evaluate the plan benefits for the collected data using two per-
spectives: spatiotemporal coverage and data utility. Coverage
indicates how likely it is that a specific cell ci has accurate
data for data type dk in time frame n, and utility indicates
how useful those data items are, considering redundancy.
Since both coverage and utility are closely related to the
on/off state of sensors in each cell, we denote the activation
state of dk in ci using an N -dimensional vector ωi,k[n] =
[ωi,1,k[n], . . . , ωi,N,k[n]], where ωi,j,k[n] = Wj,k[n]·Gj,i[n].

The single-cell single-frame coverage X0[n] tells whether
each cell is directly covered by data from at least one node.
Its element is represented as

x0i,k[n] = x
(
ωi,k[n]

)
= 1−

N∏
j=1

(
1− ωi,j,k[n]

)
. (1)

Even when a cell is not directly covered, it could have effective
coverage from impacts of historical states and nearby cells.
The single-cell single-frame effective coverage matrix X[n]
has elements

xi,k[n] = 1−
n∏
ν=0

M∏
i′=1

(
1− hTk (n− ν)·hSk (Si,i′)·x0i′,k[ν]

)
.

Therefore, the spatial average coverage in frame n, x[n], is
the average effective coverage over all data types in all cells,
and x[n′:n] is its average over time frames n′ to n, i.e.

x[n] =
1

M
·
K∑
k=1

M∑
i=1

pk·xi,k[n], (2)

x[n′:n] =
1

n− n′ + 1
·

n∑
ν=n′

x[ν]. (3)

Similar to (1), the single-cell utility function can be written
as ui,k[n]=u

(
ωi,k[n]

)
, where the selection of function u is

application dependent. A general choice of function u should
have these properties: (a) For any data type dk in any cell,
having data collected from more nodes in the cell is more
useful than having data from only one node. (b) Having data
from many different cells is globally more useful than having
multiple data items from the same cell. Replacing letter x in
Eq. (2) and (3), we get similar expressions for u[n′:n].

Finally, the benefits, i.e. the overall average coverage X
and the overall average utility U are derived respectively as

X = x[0:z], U = u[0:z], (4)

which we would like to maximize in our optimization, where
z is the total number of time frames during entire operation.

Cost: We depict the cost of a plan using the number of active
nodes, which reflects the overhead (e.g. core energy and user
attention) to keep the nodes active. Scheduling policies can
leverage this term to favor the situations where all sensors on
some nodes are switched off. It also depends on plan W[n].
According to our definition in Section II-A, we say nj is active

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

in time frame n if ∃k s.t. Wj,k[n] = 1. Since W[n] is binary,
that is equivalent to

yj [n] = 1−
K∏
k=1

(
1−Wj,k[n]

)
, y[n] =

N∑
j=1

yj [n], (5)

where yj [n] is the single-frame activation state of node nj and
y[n] is the total number of active nodes in time frame n. The
average node activation over multiple time frames y[n′:n] is
written by replacing the x letter in Eq. (3) with y, i.e. the
average number of active nodes Y = y[0:z], which we use
as cost to minimize in our optimization.
Constraints: One key constraint that we capture by our defini-
tion is Wj,k[n]6Bj,k,∀j = 1, . . . , N,∀k = 1, . . . ,K,∀n∈N,
which reflects the hardware configuration, i.e. no device
could activate a sensor that does not exist on it.

The other constraint is the data quota determined by the
limited server resources and communication infrastructure so
that all data could be transferred and processed timely. The
total data rate in frame n is the number of active sensors of
each type multiplied by the type-specific data rate, i.e. d[n] =∑K
k=1 rk·

∑N
j=1Wj,k[n], and the average data generation rate

through time frames n′ to n is d[n′:n] =
∑n
ν=n′ d[n]/(n −

n′ + 1). Thus, the average data rate D = d[0:z]. Note the
dimension of D is byte/s. With our optimization, we would
like to keep D bounded within a predefined data quota Dquota.

C. Problem Formulation

With the assumptions and terms we have, we formulate
the spatiotemporal scheduling problem as the following multi-
objective optimization problem:

In any time frame n ∈ N, given the sensor type presence
matrix B, the nodal placement matrix G[n] and the data type
characteristics rk, hTk , and hSk , k = 1, . . . ,K, determine W[n]
that optimizes the expectation of overall performance E[Γ],
which is defined as the weighted sum of (a) the average cov-
erage X , (b) the average utility U , and (c) the average number
of active nodes Y , subject to the hardware configuration and
data quota constraints. Formally, this is stated as

max
W[n]

E[Γ(X,U, Y)] = γ1·E[X] + γ2·E[U]− γ3·E[Y], (6)

s.t.Wj,k[n] 6 Bj,k,∀j = 1, . . . , N,∀k = 1, . . . ,K,

E[D] 6 Dquota.

This formulation of the spatiotemporal scheduling problem,
even when simplified into its single time frame case used in
our online approach, is a typical integer programming problem
which is known to be NP-hard.

III. ALGORITHMS FOR ONLINE SCHEDULING

In the absence of a scheduling technique, a simplistic policy
is that of complete activation (i.e. activating every available
sensor). This naı̈ve “everything” approach may not meet data
constraints, but always results in the maximum possible overall
coverage and utility with the given inputs and can be used for
comparison purposes in evaluation. A brute-force search will

Algorithm 1: Highest-score-first algorithm for finding a
plan W[n] for time frame n, showing the basic procedure
and the slow termination phase

1 function planHSF (B, G[n], Dq, {d}, S, γ, X0) ;
Input : Presence B, placement G[n], and quota Dq

Data types {d} and their characteristics
Spatial distance S and weights of objectives γ
Historical single-cell coverage X0[0 : (n− 1)]

Output: Plan W[n] for time frame n
2 Initialize W[n]← 0N,K ; jST ← null;
3 X0[n]← Get single-cell coverage from W[0 : n] ;
4 cand← {(j, k) |Bj,k = 1 ∧Wj,k[n] = 0} ; sumD← 0 ;
5 while cand is not empty do
6 maxScr← 0 ; maxPr← null;
7 for each (j, k) in cand do
8 W′ ←W ; W ′j,k ← 1 ;
9 δj,k ← Get score from W[0 : (n− 1)] and W′ ;

10 if δj, k > maxScr and sumD + rk 6 Dq then
11 maxScr← δj,k ; maxPr← (j, k) ;

12 if maxPr is not null then
13 if jST is null then WmaxPr[n]← 1 ;
14 else
15 wST,k ← 1 ; sumScr← sumScr + δj,k ;
16 if sumScr > 0 then
17 jST ← null; WjST,∗ ← wST ;

18 sumD← sumD + rk ;
19 else if jST is null then
20 (j, k)← Get pair for max score without ∆y ;
21 jST ← j ; wST ← 0K ; sumScr← δj,k ;
22 maxPr← (j, k) ; sumD← sumD + rk ;

23 if maxPr is not null then cand.delete maxPr ;
24 else break ;

compute the optimal solution but obviously only for very small
test cases. In this section, we propose 2 algorithms to address
the online scheduling problem: (a) an iterative greedy heuristic
with improved algorithm termination (Sec. III-A), and (b) a
Lyapunov control strategy inspired optimization (Sec. III-B).

A. Highest-Score-First Greedy Heuristic

The highest-score-first (HSF) greedy heuristic computes a
score for each sensor on each node (i.e. each node-sensor pair)
in a time frame n. It iteratively chooses the node-sensor pair
with the highest score for activation, and updates the scores
for other pairs, until no selection yields a positive score. The
data quota can roll over to the next time frame but cannot
be advanced. Its balance in current frame is denoted by Dq
Algorithm 1 sketches the overall technique.

The score δj,k of a node-sensor pair (j, k) is defined as the
unit-data contribution it makes to the overall performance if
we activate (only) this sensor, i.e. δj,k = pk · (γ1·∆x[n] +
γ2·∆u[n] − γ3·∆y[n])/∆d[n], where ∆d[n] = rk. The intu-

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

ition behind HSF is to enhance the overall performance metric
E[Γ] in Equation 6 using the limited data quota.

HSF starts with an empty matrix W[n], where all sensors
are inactive, i.e. Wj,k[n] = 0,∀j = 1, . . . , N,∀k = 1, . . . ,K.
In every iteration (big loop, Ln 5–24), it computes the score
δj,k for each (j, k) pair, s.t. Bj,k=1 and Wj,k[n]=0 (sensor
k exists on node j but not yet activated), and picks the (j, k)
that gives the maximum positive δj,k. To compute the scores
of all pairs (inner loop, Ln 7–11), for each pair (j0, k0), it
creates a temporary plan W ′, s.t. W ′j0,k0 = 1 and W ′j,k =
Wj,k[n],∀(j, k) 6= (j0, k0), computes the objective values of
W ′, and subtract that of W [n] from the result to acquire the
score δj0,k0 . HSF loops until no positive score is possible, or
the data quota is used up.
Complexity: The intuitive implementation of HSF has worst-
case time complexity of O(K2M2N2+K2MN3), which can
be reduced to O(KM2N+KMN2+K2N2) with appropriate
optimization.
Early termination of HSF: Occasionally HSF terminates due
to non-positive scores; if we select a pair (j0, k0) with non-
positive score, succeeding selections can be made on the same
node to amortize the cost of activating j0, so all active sensors
on j0 together can make a positive total score. In this case,
j0 is a node that should be included in W [n], but were not
because of HSF’s early termination.

Therefore, we add a “slow termination” (ST) phase depicted
in Alg. 1, Ln 12–22 to HSF. In HSF–ST, when the scheduler
meets all non-positive scores, it moves (using Ln 19–22) into
the slow termination phase (marked by node jST). Specifically
in this phase, it picks the (j, k) that gives the highest score
when not considering the ∆y[n] term in score computation (Ln
20). Then it iteratively adds other sensors on the same node j,
keeping track of the total score of all added sensors on node
j (Ln 14–17). There are three possible ways that ST ends: (a)
After adding a sensor, the accumulative score turns positive
(Ln 16). In this case, it adds all sensors selected during ST
into W[n] (Ln 17) and goes back to the basic HSF loops. (b)
Data quota is used up. (c) All sensors on node j are selected,
but the accumulative score is still non-positive. In both (b) and
(c), all sensors selected during ST are dropped, and W[n] is
returned immediately (Ln 24).
Complexity: The worst-case time complexity of HSF–ST is
the same with basic HSF, i.e. O(KM2N+KMN2+K2N2).

B. Data Budget Handling using Lyapunov Control

In HSF–ST (Section III-A), we try to optimize the overall
performance up to time frame n, without considering future
possibilities. However, on occasion, we may want to save
data for future use when present benefits are marginal, or
advance data quota to seize the opportunity for a significant
improvement. The Lyapunov control strategy allows us to
dynamically handle data budget while keeping the average
usage bounded.

Lyapunov optimization [13] is often applied to systems that
evolve over time. It maximizes the temporal average reward
while keeping one or more “queues” bounded. The framework

defines a Lyapunov function on system states and tries to
keep the Lyapunov drift (expected difference between function
values at two successive steps), as small as possible, which
ultimately ensures the system reaches its goal over time.

In our spatiotemporal scheduling, we define the system state
φ[n] as a queue representing the accumulative data rate, i.e.
Q[n] = n · d[0:(n− 1)], which equals the amount of data that
have been generated up to frame (n − 1) divided by frame
length T . Then, the Lyapunov function is L(φ[n]) = (Q[n]−n·
Dquota)

2/2, and the Lyapunov drift is ∆L(φ[n]) = E[L(φ[n+
1]) − L(φ[n])] ≈ (Q[n] − n · Dquota) · d[n], where d[n] =
Q[n+1]−Q[n]. The strategy suggests we minimize the “drift
minus reward” (∆L(φ[n])− V ·R[n]), which is to maximize

γ1 · x[0: n] + γ2 · u[0:n]− γ3 · y[0:n]− γL ·∆L(φ[n]). (7)

In the actual implementation, we use the same γ values as
coefficients for X , U , and Y ; we pick a value in the order of
10−9 for γL. Tuning of γL and a few other minor tweaks are
needed to establish consistency when the scenario scales.
Complexity: The complexity of Lyapunov control depends on
the implementation of the maximizer. In our case, we employ a
similar greedy heuristic as is used in Algorithm 1 to maximize
Eq. 7, using the increment of its value as the score in selection
of node-sensor pairs. It has the same complexity with HSF–ST.

IV. PLATFORM AND MEASUREMENTS

The spatiotemporal scheduling approach we propose is de-
rived from our existing community-oriented IoT deployments
in four different locations: (a) UCI campus in Irvine, CA,
(b) the Thingstitute lab and Victory Court Senior Apartments
in Montgomery County, MD, (c) NTHU campus in Hsinchu
City, Taiwan, and (d) Dhaka, Bangladesh. To determine the
feasibility of our approach and collect measurements to drive
our simulations, we created a prototype platform and carried
out measurement studies using varying and realistic combi-
nations of sensors in three testbeds. Collected data provides
data generation patterns of several common application/sensor
types in urban crowd-sensing scenarios.
The Flexible Sensing Platform: We leverage SCALE2 [14]
and SCALECycle [15], our existing community IoT projects
to design the sensing platform that consists of three major
components: (a) the end devices (insitu or mobile) (b) a com-
munity server that monitors and manages the devices, and (c)
the data exchange service that supports their communication
(Fig. 2a). End devices are prototyped using Raspberry Pi 2
Model B with necessary components, including Wi-Fi adapter,
ADC board, power supply, and optional microphone (USB)
and camera (CSI), etc. Analog sensors include several MQ
family sensors (MQ–5,7,131,135) and TGS 2600. A mobile
node is powered on a USB battery pack, and has a GPS module
(USB or Bluetooth). An in-situ node gets power from a USB
wall charger. The Raspbian-based RPi platform runs a client
middleware (implemented in Python), which consists of a local
message broker and multiple applications that communicate
with each other. Applications include virtual sensors (data
sources), publishers (data sinks), network manager, etc. When

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

(a) (b) (c) (d)
Fig. 2. (a) Software architecture diagram of the system, components in dotted boxes are in development. (b,c) GPS traces collected during two runs of
measurement study on the Montgomery County and the NTHU testbeds, respectively. (d) Photo of a mobile node mounted on a bicycle.

TABLE I
DATA GENERATION PATTERN USED IN MEASUREMENT STUDY.

Sensor Type Format Sampling Pattern Sample Size
Gas (Analog) JSON 1 message every 5 sec 200

Microphone WAV Clip of 8 sec every min 800k

Camera JPEG 1 picture every 20 sec 180k

Wi-Fi (iw) JSON List of 20 items every 4 sec 3.6k

connected to the Internet, the collected data is delivered to
a data exchange service using the MQTT protocol [16]. The
mobile node can be mounted on bikes as is shown in Fig. 2d.
The server is a desktop PC that uses data exchange services
to receive end device information and publish commands
(task assignments). The data exchange service is currently
implemented by a desktop PC that runs the Mosquitto MQTT
broker, but can be replaced by any MQTT-enabled broker.
Both PCs are connected to our institution’s LAN using a 100
Mbps Ethernet network.
Initial Measurements on Real Testbeds: We collected initial
measurements using the prototype end device with several
different hardware configurations on three of our real-world
testbeds: On the UCI and the Montgomery County testbeds,
the device is equipped with a TGS 2600 air contaminant
sensor and uses its Wi-Fi adapter to collect RSSI data for
nearby Wi-Fi APs. On the NTHU testbed, one profile has
four MQ sensors and continuous collection of air pollution
data at a sampling rate of 0.2 Hz. Another one has a USB
microphone and a CSI camera module. Fig. 2(b,c) shows the
GPS trace collected during two runs of measurement study.
Data generation patterns we observed are listed in Table I.
The sample size shown in the table is for uncompressed raw
data. Different application/data types exhibit unique patterns
and rates of data generation.

V. PERFORMANCE EVALUATION

In this section, we describe the simulation environment and
experimental design for performance evaluation, and present
the results with analyses.

A. Experimental Environment and Simulation Setup

Earlier in Section IV, we built prototype devices to demon-
strate the effectiveness of our system architecture and conduct

TABLE II
BASIC SIMULATION SETUP.

Simulation Parameters Values

Cells
Number M 63

Size (Length) lcell/m 50

Nodes

Number of All N 100 or 50 a,b

Number of Mobile Nodes Nmob 40 or 20 a,b

Sensor Presence See Table III b

Speed of Mobile Nodes v/(m/s) [0.5, 1.5] a

Data Types
Number K 10

Characteristics See Table III

Simulation

Length of Time Frame T/min 1

Length of Simulation Tdur/min 180

Data Quota Dquota/(MB/s) 3.5 a

Weights of Objectives γ (1, 0.4/ ln 2, 1.2)t

a Subject to change if used as an independent variable.
b Setup varies in simulation scenarios.
measurement studies on real-world testbeds. Due to the lim-
ited scale of our current deployments, we carry out further
evaluation in simulations driven by measurements from our
testbeds. Simulations are performed using the ONE simulator
[17] and our custom simulation framework written in R. Data
generation rates and patterns are tuned to reflect our real-world
measurements; and mobility traces are generated by the ONE
simulator using its pedestrian model on the built-in Helsinki
street map [17]. The performance evaluation component and
scheduler interface are implemented by our custom simulator
written in R, where we can add algorithms as R functions. Our
simulations do not consider communication delays or faults.
Experiments were done on the ICS Openlab cluster at UCI,
where each node has two (2x) Quad-core Intel Xeon 3.0 GHz
CPUs, 32 GB RAM, and runs CentOS 7.3.

The basic experimental setup is shown in Table II. As is
assumed in Sec. II-A, we use nodal locations at the beginning
of frame n as the prediction of G[n] which stays the same
throughout the frame n, i.e. G[n] = G(n·T). This assumption
holds as v·T�lcell. The simulation framework is extensible
to support complex predictors. We define the spatial impact
hSk for each individual data type using a exponential func-
tion hSk (s)= exp(−s/S0

k), s>0 with a type-specific constant
S0
k > 0. We define the temporal impact hTk using a step-

down function hTk (t)=1− θ(t−T 0
k), t>0 with a type-specific

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

TABLE III
DATE TYPE CHARACTERISTICS AND SENSOR PRESENCE ON NODES.

Data
Type Model

Rate Wt. Impact Presence a

rk
(B/s) pk

S0
k

(m)
T 0
k

(min) Pmob Psta

d1–d6 Analog 40 – b 500+ 20 – c 1

d7 Audio 107k 0.10 100 5 0.6 1

d8 Picture 9k
0.14 10 60 0.9 0

d9 0.12 750 30 0.3 0.7

d10 Wi-Fi 900 0.06 60 20 1 1
a Represented by probability of presence on mobile and static nodes.
b Values of p1–p6 are respectively 0.16, 0.10, 0.10, 0.08, 0.08, and 0.06.
c Each mobile node has four out of six analog gas sensors on-board.

constant T 0
k > 0, where θ denotes the Heaviside step function.

We use the logarithm utility function u(ω) = log(1 +
∑
ω).

Data type specs are shown in Table III.
We acquired baselines from the naı̈ve everything approach

and a utility-driven random greedy algorithm that chooses
sensors from cells where highest utility gain can be achieved
until data quota is met, which degrades to “everything” with
infinite quota. We compared them with HSF–ST and Lyapunov
control algorithms. Test sets are designed to reveal the impact
of (a) node mobility, (b) device heterogeneity, and (c) scale.

We also tested a basic genetic algorithm (GA) [18] with a
limit on running time set to frame length T=1 min (Fig. 4c).
GA did not appear to fit in online scheduling and performed
badly in most of the tests (e.g. Fig. 4a). We believe this is
because the time frame is too tight for GA to converge as the
solution space expands exponentially when system scales up.
Thus, GA is excluded from most of our results.

B. Performance Evaluation Metrics

1) Overall Performance: The overall performance is the
optimization goal, given by the weighted sum of objectives as
is formulated in Equation 6. Note that the overall performance
considers both benefit and cost.

2) Coverage, Utility, and Number of Active Nodes: These
are individual objectives defined in Section II-B. We compare
our approaches with them for in-depth analyses. Number of
active nodes is normalized by N ·K.

3) Data Generation and Quota Utilization: According to
our formulation in Section II-B, the operation is constrained by
the data quota. Satisfying the long-term data quota constraint,
a good algorithm usually maximizes its quota utilization.

4) Scheduling time: Scheduling time is the running time of
the scheduling algorithm. In our proposed online approach, all
computation needs to be done on the server within a limited
time (shorter than the time frame). Hence, it is important to
compare the running time of the algorithms.

C. Simulation Results

1) Impact of Node Mobility: Fig. 3(a,b,c) display the results
on varying node mobility. In Fig. 3a and 3b, the total number
of nodes is fixed at N=50. As the number of mobile nodes
among them increases, we notice that the overall performance
increases for all tested algorithms (Fig. 3a), while the average

number of active nodes stays almost unchanged (Fig. 3b).
Similar trend has been observed when we increase the moving
speed of the pedestrian model (Fig. 3c, all nodes are mobile).
These results show the benefits of using mobile sensing nodes
as augmentation to existing in-situ deployments. In all these
tests, HSF–ST and Lyapunov control show superior perfor-
mance over the random greedy algorithm. Both our algorithms
achieve overall performance close to “everything”, while using
25–30% fewer active nodes.

2) Impact of Device Heterogeneity: Fig. 3(d,e,f) displays
the results on varying device heterogeneity. Device hetero-
geneity is represented by the distribution of a set of sensors
of each type across all nodes; all nodes are mobile in this
test set. With more mobile nodes, the sensors are distributed
more sparsely, so more nodes need to be activated (Fig. 3f,
especially the “everything” and “random” curve) to achieve the
same level of coverage (Fig. 3e). This means lower overall
performance, because the overall performance considers the
cost of node activation. In comparison, HSF–ST and Lya-
punov control achieve better overall performance by balancing
benefit (coverage and utility) and cost (node activation). The
improvement is about 10% for N=200; this increases as the
deployment scales up. Lyapunov control performs better than
HSF–ST, especially when node heterogeneity increases, likely
because the non-uniform distribution of sensors could trigger
significant benefits that need to be balanced over time.

3) Impact of Scale: Fig. 4 displays results for the impact of
scale. Fig. 4(a,b,c) are results for experiments where we tune
the total number of nodes, with a fixed 40% of nodes being
mobile. As the total number of nodes increases, the marginal
performance becomes trivial and gradually gets overwhelmed
by the penalty from node activation (Fig. 4a, the “everything”
curve). The random greedy algorithm does not scale, and its
performance gets worse for N>40. In comparison, HSF–ST
and Lyapunov control achieve better-than-“everything” overall
performance by nicely balancing benefits and cost. Fig. 4b
shows HSF–ST and Lyapunov control makes full use of the
data quota without violation. Fig. 4c shows a polynomial
increase in scheduling times as predicted when the total
number of nodes is small, and linear growth when the number
of nodes approaches the “appropriate” value for the map. In
this test set, HSF–ST seems to be slightly better than Lyapunov
control, especially when the number of nodes is big. HSF–
ST also runs about 25% faster than Lyapunov control in our
settings. A trade-off between spatial and temporal resolution
can be inferred here, i.e. a longer time frame should allow
planning for more nodes on a large map with more cells.

Fig. 4d is for a similar test set, but the number of in-situ
nodes is fixed at 30 while the number of mobile nodes grows
from 0 to 170. Fig. 4e and 4f show performance and quota
utilization when data quota increases from a very small value
(hundreds of kilobytes) until it is more than sufficient. We find
that Lyapunov control achieves better overall performance and
quota utilization when data quota is larger. Both algorithms
result in up-to 15% better overall performance as compared to
the random greedy algorithm.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

0.82

0.84

0.86

0.88

0.90

0 10 20 30 40 50
Number of mobile nodes

O
ve

ra
ll

pe
rfo

rm
an

ce

Solutions
Everything
HSF-ST

Lyapunov
Random

(a) Overall performance vs. node mobility, using
fixed total number of nodes, N=50

0.00

0.02

0.04

0.06

0.08

0 10 20 30 40 50
Number of mobile nodes

Ac
tiv

e
no

de
s

no
rm

al
iz

ed

Solutions
Everything
HSF-ST
Lyapunov
Random

(b) Active nodes vs. node mobility, N=50

0.825

0.850

0.875

0.900

0.925

0.0 0.5 1.0 1.5 2.0
Speed multiplier

O
ve

ra
ll

pe
rfo

rm
an

ce

Solutions
Everything
HSF-ST
Lyapunov
Random

(c) Overall performance vs. speed of mobile nodes
(multiplier times v ∈ [0.5, 1.5] m/s), Nmob=50

0.70

0.75

0.80

0.85

0.90

50 100 150 200
Number of mobile nodes

O
ve

ra
ll

pe
rfo

rm
an

ce

Solutions
Everything
HSF-ST

Lyapunov
Random

(d) Overall performance vs. device heterogeneity

0.750

0.775

0.800

0.825

0.850

50 100 150 200
Number of mobile nodes

C
ov

er
ag

e

Solutions
Everything
HSF-ST
Lyapunov
Random

(e) Coverage vs. device heterogeneity

0.0

0.1

0.2

50 100 150 200
Number of mobile nodes

Ac
tiv

e
no

de
s

no
rm

al
iz

ed

Solutions
Everything
HSF-ST
Lyapunov
Random

(f) Active nodes vs. device heterogeneity

Fig. 3. Simulation results for impact of node mobility and device heterogeneity.

VI. RELATED WORK AND CONCLUSION

Resources and data from crowd users have been leveraged in
applications [19] including voting systems, information shar-
ing systems, and social games. In recent years, smartphones
with sensors have been used to engage crowd user participation
in spatiotemporal dependent tasks. Kanhere [20] points out
several challenges in participatory sensing, such as context-
awareness and energy conservation. Crowd incentives are also
crucial when leveraging crowd resources, and most studies
employ monetary incentives [21], [22]. For example, Feng
et al. [21] present an auction framework for the crowd with
smartphones in order to maintain truthfulness and individual
rationale. Incentives other than monetary have been studied
in more recent work [23]–[25]. Talasila et al. [24] and Chen
et al. [25] propose to leverage mobile and even augmented-
reality games to transparently guide mobile gamers to certain
places to perform sensing tasks. Our work concentrates on the
spatiotemporal scheduling problem, and is orthogonal to the
aforementioned related work. Benson et al. [26] and Uddin et
al. [14] create crowd sensing systems for safety awareness in
communities. Liao et al. [6] propose a platform that combines
crowd and in-situ sensors for urban sensing. Their work only
considers individual tasks at discrete locations; in contrast,
our work strives to build complete sensor reading maps in
real-time. Zhu et al. [15] propose to leverage node mobility
for better coverage and timely data collection in communities.
Han et al. [27] formulate a utility maximization framework for
mobile crowd sensing that balances data utility and incentive.
Khan et al. [28] build a localization framework to estimate the

block-level location of participating mobile devices to lower
the usage of GPS for energy conservation. Marjovi et al. [1]
and Hasenfratz et al. [2] propose to leverage mobile entities in
cities to help create high-resolution pollution maps, and focus
on using data from a small group of devices and leveraging
offline machine learning based techniques to infer the states
in uncovered areas. Our work mainly considers device and
data heterogeneity and stresses on sensor activation strategies
to balance coverage and redundancy. Hachem et al. [29] build
a registration middleware for city-scale participatory sensing
systems to reduce participation based on predicted probability
of path and capability overlap. Our approach applies to real-
time monitoring applications and dynamically selects sensors
to activate.

In this paper, we motivated and formalized the spatiotem-
poral scheduling problem in crowd augmented urban sensing
systems. We proposed an online scheduling framework and
two scheduling algorithms that address the challenges of het-
erogeneity and scalability. We developed prototype platforms,
deployed them in three real community testbeds and collected
measurements that were then used to drive extensive simula-
tions. Experimental results showed that, in comparison to naı̈ve
approaches, the proposed algorithms (HSF–ST and Lyapunov)
are significantly more efficient and scalable in heterogeneous
community/city settings. Future work aims at further address-
ing scalability issues through the use of scheduling hierarchies
to offload work to edge servers and devices [30]. We also plan
to explore the impact of uncertainties in network connectivity
and node mobility on plan execution using different mobility
prediction models. Such research is a key enabler to engaging

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

0.7

0.8

0.9

1.0

0 50 100 150 200
Number of mobile nodes

O
ve

ra
ll

pe
rfo

rm
an

ce

Solutions
Everything
GA
HSF-ST

Lyapunov
Random

(a) Overall performance vs. total number of nodes

Quota

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

0 50 100 150 200
Number of mobile nodes

D
at

a
ge

ne
ra

tio
n

(b
yt

e
/ s

ec
)

Solutions
Everything
GA
HSF-ST

Lyapunov
Random

(b) Data generation vs. total number of nodes

Frame

0

20

40

60

0 50 100 150 200
Number of mobile nodes

Pl
an

ni
ng

 ti
m

e
(s

ec
)

Solutions
Everything
GA
HSF-ST
Lyapunov
Random

(c) Scheduling time vs. total number of nodes

0.80

0.85

0.90

0.95

1.00

0 50 100 150
Number of mobile nodes

O
ve

ra
ll

pe
rfo

rm
an

ce

Solutions
Everything
HSF-ST

Lyapunov
Random

(d) Overall performance vs. num. of mobile nodes

0.7

0.8

0.9

1.0

1e+05 1e+06 1e+07
Data quota (byte / sec)

O
ve

ra
ll

pe
rfo

rm
an

ce

Solutions
Everything
HSF-ST
Lyapunov
Random

(e) Overall performance vs. data quota

Quota

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

1e+05 1e+06 1e+07
Data quota (byte / sec)

D
at

a
ge

ne
ra

tio
n

(b
yt

e
/ s

ec
)

Solutions
Everything
HSF-ST
Lyapunov
Random

(f) Data generation vs. data quota

Fig. 4. Simulation results for impact of scale.

human participation in smart community deployments.
Acknowledgment: The authors thank all members of the ISG
and DSM groups at UCI for the valuable discussions, and the
volunteers for their help with measurement study. This project
is funded under NSF CNS-1450768 and NIST MSE 446677-
22553.

REFERENCES

[1] A. Marjovi, A. Arfire et al., “High Resolution Air Pollution Maps in
Urban Environments Using Mobile Sensor Networks,” in DCOSS ’15.

[2] D. Hasenfratz, O. Saukh et al., “Pushing the spatio-temporal resolution
limit of urban air pollution maps,” in PerCom ’14, pp. 69–77.

[3] S. Devarakonda, P. Sevusu et al., “Real-time Air Quality Monitoring
Through Mobile Sensing in Metropolitan Areas,” in SIGKDD ’13
Workshop on Urban Computing, ser. UrbComp ’13, pp. 15:1–15:8.

[4] M. AbuJayyab, S. A. Ahdab et al., “PolluMap: A Pollution Mapper for
Cities,” in 2006 Innovations in Information Technology, Nov. 2006.

[5] Y. Zheng, T. Liu et al., “Diagnosing New York City’s Noises with
Ubiquitous Data,” in UbiComp ’14, pp. 715–725.

[6] C. Liao, T. Hou et al., “SAIS: Smartphone augmented infrastructure
sensing for public safety and sustainability in smart cities,” in EMASC
’14, pp. 3–8.

[7] R. K. Ganti, F. Ye et al., “Mobile crowdsensing: current state and future
challenges,” IEEE Communications Magazine, vol. 49, no. 11, 2011.

[8] R. Beelen, O. Raaschou-Nielsen et al., “Effects of long-term exposure
to air pollution on natural-cause mortality: an analysis of 22 european
cohorts within the multicentre escape project,” The Lancet, 2014.

[9] N. Künzli, R. Kaiser et al., “Public-health impact of outdoor and traffic-
related air pollution: a european assessment,” The Lancet, 2000.

[10] R. T. Burnett, J. Brook et al., “Association between particulate-and gas-
phase components of urban air pollution and daily mortality in eight
canadian cities,” Inhalation toxicology, 2000.

[11] X. Xu, J. Gao et al., “Air pollution and daily mortality in residential areas
of beijing, china,” Archives of Environmental Health: An International
Journal, vol. 49, no. 4, pp. 216–222, 1994.

[12] J. Zhang, Y. Sun et al., “Characterization of submicron aerosols during
a month of serious pollution in beijing, 2013,” Atmospheric Chemistry
and Physics, vol. 14, no. 6, pp. 2887–2903, 2014.

[13] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures on Commu-
nication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[14] M. Y. S. Uddin, A. Nelson et al., “The SCALE2 multi-network archi-
tecture for iot-based resilient communities,” in SMARTCOMP ’16.

[15] Q. Zhu, M. Y. S. Uddin et al., “Upload planning for mobile data col-
lection in smart community internet-of-things deployments,” in SMART-
COMP ’16, pp. 1–8.

[16] MQTT. [Online]. Available: http://mqtt.org/
[17] A. Keränen, J. Ott et al., “The ONE simulator for DTN protocol

evaluation,” in ICST ’09, p. 55.
[18] L. Scrucca, “GA: A package for genetic algorithms in R,” Journal of

Statistical Software, vol. 53, no. 4, pp. 1–37, 2013.
[19] M. Yuen, I. King et al., “A survey of crowdsourcing systems,” in PASSAT

’11 and SocialCom ’11, pp. 766–773.
[20] S. Kanhere, “Participatory sensing: Crowdsourcing data from mobile

smartphones in urban spaces,” in MDM ’11, 2011, pp. 3–6.
[21] Z. Feng, Y. Zhu et al., “TRAC: Truthful auction for location-aware

collaborative sensing in mobile crowdsourcing,” in INFOCOM ’14.
[22] M. Talasila, R. Curtmola et al., “Crowdsensing in the wild with aliens

and micropayments,” IEEE Pervasive Computing, vol. 15, Jan 2016.
[23] F. Alt, A. Shirazi et al., “Location-based crowdsourcing: Extending

crowdsourcing to the real world,” in NordiCHI ’10, 2010, pp. 13–22.
[24] M. Talasila, R. Curtmola et al., “Alien vs. mobile user game: Fast and

efficient area coverage in crowdsensing,” in MobiCASE ’14, pp. 65–74.
[25] Y. Chen, H. Hong et al., “Gamifying mobile applications for smartphone

augmented infrastructure sensing,” in NetGames ’17, pp. 12:1–12:16.
[26] K. Benson, C. Fracchia et al., “SCALE: Safe community awareness

and alerting leveraging the internet of things,” IEEE Communications
Magazine, vol. 53, no. 12, pp. 27–34, 2015.

[27] Y. Han, Y. Zhu et al., “Utility-maximizing data collection in crowd
sensing: An optimal scheduling approach,” in SECON ’15, pp. 345–353.

[28] A. Khan, S. K. A. Imon et al., “A novel localization and coverage
framework for real-time participatory urban monitoring,” Pervasive and
Mobile Computing, vol. 23, pp. 122–138, 2015.

[29] S. Hachem, A. Pathak et al., “Probabilistic registration for large-scale
mobile participatory sensing,” in PerCom ’13, pp. 132–140.

[30] H. Hong, P. Tsai et al., “Supporting internet-of-things analytics in a fog
computing platform,” in CloudCom ’17.

[31] Array of things. [Online]. Available: medium.com/array-of-things

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

