
Data Collection and Upload under Dynamicity in
Smart Community Internet-of-Things Deployments

Qiuxi Zhu, Md Yusuf Sarwar Uddin, Zhijing Qin, Nalini Venkatasubramanian

Department of Computer Science, University of California, Irvine, Irvine, California, USA

Abstract

The Internet of Things has enabled new services to communities in many do-

mains, e.g. smart healthcare, environmental awareness, and public safety. These

services require timely and accurate event delivery, but such in-situ deployments

are often limited by the coverage of sensing/communication infrastructures. In

this paper we develop effective, scalable, and realistic data collection and upload

solutions using mobile data collectors in community IoT systems. Specifically,

we address the optimized upload planning problem, i.e. determine the optimal

schedule for communication to enable timely data delivery under dynamicity

in network connectivity, data characteristics/heterogeneity, and mobility. We

develop a two-phase approach and associated policies, where an initial upload

plan is generated offline with prior knowledge of networks and data, and a subse-

quent runtime adaptation alters the plan under multiple dynamics. To validate

our approach, we designed and built SCALECycle, our mobile data collection

platform, and deployed it in real communities in Rockville, MD and Irvine,

CA. Measurements from these testbeds are used to drive extensive simulations.

Experimental results indicate that compared with opportunistic operation, our

two-phase approach using a judicious combination of policies can result in 30–

60% improvement in overall data utility, 30% reduction in collection delays,

along with greater resilience to dynamicity and improved scalability.

Keywords: community, Internet of Things, data collection, upload planning,

mobility

Preprint submitted to Pervasive and Mobile Computing Journal October 10, 2017

1. Motivation and Approach

With the emerging popularity of smart personal devices and the Internet

of Things (IoT), designing platforms and applications to enable pervasive com-

puting in smart and connected communities has become a hot topic. The scale

and form of IoT deployments exhibit significant diversity – use cases range from5

personal sensing in smart homes, to creating environmental awareness in smart

instrumented communities and cities [1–3]. Recent events such as the NIST/US

IGNITE Global City Teams Challenge have brought together teams from gov-

ernments, universities, and industry to demonstrate how lives of citizens can be

improved by providing them with effective approaches to monitor and control10

their surroundings.

One example of a smart community effort is the Safe Community Aware-

ness and Alerting Network (SCALE) project [4, 5], which aims at creating an

IoT assisted community awareness system to improve the safety and health of

residents. To build a “smart” community with enhanced levels of convenience15

and safety for individuals, we aim to exploit the heterogeneity of collected data

and leverage any and all available sensing modalities for increased sensing cov-

erage in communities. Increasing sensing coverage implies potentially large up-

grades to the infrastructure – a large number of sensing devices and improved

communication coverage are often needed to fulfill fine grained data collection20

requirements.

Enabling full-fledged deployment of IoT devices and supporting continuous

operation of community scale IoT applications is difficult. Inherently, sensing

and communication infrastructures are intermittent and provide varying levels

of coverage. First, IoT systems depend heavily on network infrastructures, such25

as the Internet and the community Wi-Fi systems. Public network infrastruc-

tures are not uniformly and continuously available/accessible. Furthermore,

communication in networks that support large community deployments may be

congested or damaged in large disruptive events such as disasters – it is often

in such situations when dynamic information from impacted regions and com-30

2

munities becomes very useful [6, 7]. Second, providing complete coverage by

blanketing the entire region with sensors [8, 9], networks [10], and power supply

can be costly, difficult, and even infeasible in certain regions and terrains. Note

also that some types of sensed information may only be useful in rare events

(e.g. chemical concentration during fires) – custom deployments for such rare35

events are not cost-effective. Therefore, intuitive and flexible approaches for

instrumentation based on need are essential for enhancing the resilience and

dependability of current large-scale IoT systems.

One promising solution is to deploy mobile agents/entities for data collection

as augmentation to in-situ deployments to provide more complete, timely, and40

accurate coverage of events and phenomena (e.g. disaster damage). This is fea-

sible due to the growth in the number of personal mobile devices with sufficient

computational power, including laptops, smartphones, tablets, customized com-

puting platforms, etc. A large number of participatory systems [11–13], such as

BikeNet [14], ZebraNet [15, 16], and CarTel [17], have been designed to work45

with these mobile devices in specialized application domains. We argue that ef-

fectively leveraging such mobile agents in smart communities [18] and planning

their behavior with adequate prior knowledge can provide expanded coverage

and reduced dependency on public infrastructures, and enable cost effectiveness

in the collection of community related information. Alongside data collection,50

it is important that data get delivered to the backend (e.g. cloud services) in

time to enable online analysis and ensure quick response.

A motivating scenario: The following application scenario is based on our

experience working with first response organizations on emergency response

techniques [19, 20] and similar related projects [21–23]. Consider a community55

fire event. Enabling improved awareness for first responders and fire response

agencies requires situational information regarding the fire and its impact on

the community in a timely fashion to guide the residents and nearby crowds

to safety efficiently. This includes information on toxic and explosive gases,

air contaminants, ambient temperatures, pictures and video clips of damages60

gathered from sensors mounted on heterogeneous in-situ and/or mobile devices.

3

Challenges arise in timely data collection due to varying data size; furthermore,

the sensed data exhibit diverse timing requirements and importance levels that

cannot be determined accurately a priori. For example, information on presence

of explosive gas near the fire scene is more useful than simply obtaining pictures65

of damage taken near it. Assume that first responders and community volun-

teers that move around in the community, whom we refer to as mobile data

collectors (MDCs), carry heterogeneous devices with capability to collect data

on their own or obtain data from deployed in-situ nodes. Each MDC is provided

with a trajectory that guides its travel. Data need to be collected at specific70

landmark points and uploaded to the backend using any available network in

the community. The intermittent coverage of networks, unpredictability of data

characteristics/needs, and dynamicity in the surrounding environment add to

the challenges in determining how MDCs should operate and when and where

to upload data.75

As illustrated in the above scenario, achieving timely and reliable upload

of time critical information is challenging and essential. This paper focuses on

techniques to ensure such timely and reliable data upload. The most straight-

forward and näıve approach is to upload all data at a final collection point in

the path (depot) or the first opportunity (completely opportunistically) and80

has been adopted in many existing works [14, 17]. However, such an approach

fails to deal with the heterogeneous nature of networks, data, and applications,

and fails to handle environmental dynamics effectively, resulting in inaccurate,

incomplete or delayed information transfer. At the same time, mobility inher-

ently causes the devices to be exposed to rapidly changing surroundings; further85

more, mobility patterns and trajectories of human data collectors can deviate

from plans. These facts add to the heterogeneity and dynamicity of the system.

Current efforts to design mobile data collection in large-scale events (e.g. earth-

quakes) or in communities with poor network coverage [19, 20, 24–30] focus on

path planning and assume that the mobile data collectors (MDCs) have consis-90

tent connectivity to the backend server – this is unlikely to be true in real-world

settings, especially in disasters. Consistent and complete communication in all

4

spaces is hard to create due to physical and policy limitations. Even in highly

developed communities, public networks are not likely to be uniformly good.

In this paper we focus on how to optimally plan the upload of real-time95

information gathered by mobile data collectors that operate in conditions of

intermittently available network contexts, and how to best leverage planning

in realistic settings where dynamicity exists in network capacity (i.e. band-

width), data characteristics (e.g. size, importance, timing), and movements.

We present a two-phase approach to manage data upload for mobile data col-100

lectors to enhance the effectiveness of data collection in terms of timeliness,

efficiency, and resilience. The key idea is to address the dynamically changing

networks, data, and movements by exploiting prior knowledge of (a) commu-

nity networks (e.g. location and quality of Wi-Fi access points or other upload

opportunities), (b) the IoT deployments (e.g. where the sensors nodes are), and105

(c) the heterogeneous nature of IoT applications and associated data charac-

teristics (e.g. volume and modality of data generated during a certain period).

Prior knowledge could be learned from daily patterns of mobility and operation,

and dynamics could be observed and resolved in real-time. Note also, that much

community related IoT traffic (e.g. air quality data) is inherently delay-tolerant110

to some level. Leveraging any available information and context while being

able to adapt to dynamics and uncertainties is the main focus of our proposed

upload planning solutions.

1.1. Problem Description

As illustrated in Figure 1, in our community data collection and upload sce-115

nario, the MDC travels through the community following a given path, where

there are several places to collect data, and several “upload opportunities” that

it can use to deliver the collected data to the backend. As we discussed previ-

ously, based on our need in the fire scenario, different types of data we would

like to collect may have diverse degrees of importance and delay sensitivity. Up-120

load opportunities enable Internet connectivity using multiple methods. These

diverse approaches may lead to different costs in time, money, and energy. The

5

Figure 1: An upload planning problem, where data sites and upload opportunities lie on a

planned path, and the MDC needs to decide where to deliver the data.

community/city setting is complex, hence causes dynamicity in network con-

nectivity and MDC mobility.

Knowledge about data (e.g. size, urgency) can be acquired from system125

specifications or application requirements. Deployed sensor nodes may also

selectively send metadata to the backend based on bandwidth or cost limits.

In general, we assume that knowledge about current data and the state of the

system is available, albeit a little stale. Knowledge about opportunities can be

estimated with system specifications, Internet service providers (ISPs), device130

reports through limited communication channels, or via crowdsourcing. The

mobility pattern of the MDC on a given path (i.e. the time it spends moving on

each segment of the path), can be estimated with the knowledge about the MDC

and the terrain, or past data from previous runs. Given such knowledge, we aim

to plan the data uploading behavior of the MDC, to ensure timely delivery of135

critical data.

We formalize upload planning as a constrained optimization problem (shown

to be NP-hard). The objective of planning is to determine the optimal schedule

for data upload to maximize the overall data utility in terms of timeliness. While

6

our work is motivated in a smart community scenario, this optimization problem140

can be applied to many mobile data collection and mobile sensing scenarios. For

example, volunteers (mobile data collectors) can be dispatched in emergencies

to take pictures or videos (data collection) at targeted locations, where public

wireless networks may serve as “upload opportunities”. Our scheme aims to

assign several opportunities to each volunteer for data upload.145

1.2. The Two-Phase Proactive Approach

Developing an optimal and comprehensive plan requires thorough knowledge

about the state of the entire system, which is computationally complex and

difficult to achieve in real-time. At the same time, due to the limited accuracy of

predictions/estimations on future values of parameters (e.g. upstream data rate,150

data characteristics, moving time), there does not seem to be a straightforward

way to determine whether a plan is optimal at any specific time. To handle the

dynamic nature of the underlying networks, the application contexts, and the

environment, we propose a two-phase approach. In the first phase, referred to

as static planning, a comprehensive plan is computed before the departure of155

an MDC at the server, based on collected information about the deployment

and infrastructures and estimations of parameters. In the second dynamic

adaptation phase, the static plan is adjusted by the MDC at runtime. In

this phase, the MDC executes the dynamic adaptation schemes to adapt to the

varying connectivity to the backend, determining how to best adapt the static160

plan based on data upload deadlines vs. the current timeline, and expectations

on network availability and data characteristics vs. actual observations.

Key contributions of this paper include: (a) Formalization of upload plan-

ning (Section 2) as a constrained optimization problem that is NP-hard. A

specific contribution here is that we have considered multiples types of run-165

time dynamics and addressed them in the formulation. (b) Design of a two-

phase solution and associated algorithms (Section 3). The solution combines

a static planning stage that leverages known upload needs and opportunities

and a dynamic adaptation phase that reconfigures the upload plan based on

7

conditions at the upload site. A noteworthy contribution here is our Balanced170

Delay-Opportunity-Priority algorithm for static planning, with a Lyapunov-

based control theoretic upload adaptation at runtime. The Lyapunov-based

adaptation policy is general enough to handle common sources of dynamicity.

(c) Development of a prototype mobile sensing platform (Section 4) and vali-

dation/measurements in real community testbeds. (d) Extensive performance175

evaluation of proposed techniques via simulations driven by real-world traces

from deployments (Section 5) to demonstrate the effectiveness and investigate

the stability and scalability of the combined solution in large community set-

tings.

An initial version of this work, albeit in a more static setting, is available at180

[31].

2. Upload Planning for Mobile Data Collection

In this section, we will discuss our assumptions to simplify the problem and

define the terms and notations we used in the formulation. With the assump-

tions and notations, we formulate the upload planning problem as an optimiza-185

tion problem and prove it is NP-hard.

2.1. Assumptions

Exploiting the prior knowledge of upload planning requires comprehensive

analysis that considers multiple factors. We make the following assumptions

about our uploading planning problem to simplify the formalism.190

We assume that: (a) We plan for only one mobile agent at any time.

If there is more than one mobile agent, they work independently in isolation.

(b) Tasks are short, so that power consumption and storage constraints are

neglected. (c) A path planning phase exists a priori that generates a path for the

mobile agent based on desired optimization needs. This path is not changed195

in upload planning. (d) Data are organized in indivisible data chunks. (e)

Due to the limited range and obvious delay in connection setups, the mobile

8

agent will have to stop and stay before the connection and data transmission

take place. (f) During static planning, we know necessary parameters of

data chunks, upload opportunities, and movements, which we refer to as their200

expectations or estimates.

2.2. Terms and Notations

A mobile data collector (MDC) is a mobile agent that is able to collect

data and upload them to the backend server. It follows a path, which is an

ordered sequence of geographical sites to visit. Since the mobile agent does not205

deviate from the path as we assumed, each point on the path can be mapped

into a location x, which is the distance from the path origin to that point along

the path. Note that the MDC may stop for communication at several points.

When it is moving, its speed at any location x is v(x),∀x > 0, x 6= x(a),∀a, x 6=

x(u),∀u. We use the “speed vs. location” representation v(x) here to indicate210

that the path and terrain are the dominant factors to limit the speed. In the

static planning, v(x) is estimated as ve(x).

A data site is a place where we are interested in sending the MDC for data

collection. The data collection rates at all data sites are the same Ra. A data

chunk consists of indivisible data that share some characteristics and have to215

be kept/transferred together. For simplicity, we assume each data chunk is held

by a data site. A data chunk a can be described by quadruple a = (x, s, d, p),

where x is the location of the data site holding a, and s, d, and p are respectively

the size, deadline, and importance level (priority) of a. We assume p ∈ (0, 1].

The expectations of s and p are respectively se and pe. Let {a} denote the set220

of all data chunks and N be the total number of data chunks, i.e. N = |{a}|.

We also use x(ai) to refer to the x (i.e. location) of ai, and the similar notations

for other attributes (size, deadline and priority). A data chunk is considered

delivered when it is uploaded. The actual delivery time of ai in a given upload

plan P = (λ, l) (defined later) is written as t(ai, {a}, {u}, v, λ, l). The estimated225

delivery time used in the static planning is denoted as te(ai, {a}, {u}, ve, λ, l).

An upload opportunity is a place where the MDC can upload data to the

9

backend. An upload opportunity u is represented by u = (x, r), where x is its

location, and r is its bandwidth (upstream data rate). Let {u} denote the set

of all upload opportunities and M be the total number of upload opportunities,230

i.e. M = |{u}|. We also use x(uj) to denote the x of uj , and the same to r. The

estimated uploading rate re is a very important piece of prior knowledge in the

static planning. The data sites, upload opportunities, and speed function, that

is, {a}, {u}, and v, together form the input of the upload planning problem.

An upload plan describes the upload activities of an MDC, which is ulti-235

mately the solution to a specific upload planning problem. A plan P is a tuple

P = (λ, l) where λ is the global plan that defines which data chunk goes to

which opportunity, and l is the local ordering function that determines the

order in which the chunks at the same opportunity are uploaded. Therefore, the

global plan λ is a mapping over data chunks {a} to the set of upload opportuni-240

ties, {u}. We represent a global plan in three different ways for convenience in

different contexts. The first one is the mapping representation, where λ(ai) =

uj if data chunk ai is planned at opportunity uj . The second one is an N -by-M

binary value plan matrix Λ, where Λi,j = 1 iff λ(ai) = uj . The third represen-

tation is an N -dimensional plan vector j = [j1, j2, · · · , jN]T , s.t. uji = λ(ai).245

The local ordering function l(ai,ak, λ) = 1 iff λ(ai) = λ(ak), and ai goes before

ak in the local order. To reduce the complexity of solutions, note that when

uploading time is much shorter than moving time, l becomes less influential, so

we can decouple it from λ. Therefore, in static planning, l is assumed to be a

simple highest-priority comparator using deadline as a tiebreaker.250

The constraint we have in the upload planning problem is the cause-and-

effect constraint, which shows a data chunk cannot be uploaded before it

is collected. The constraint can be represented as a binary matrix C, Ci,j =

1 iff x(ai) 6 x(uj). A valid global plan λ, with its matrix representation being

Λ, may have λ(ai) = uj , i.e. Λi,j = 1, only if Ci,j = 1.255

10

2.3. Utility of Data Chunk Delivery

We argue that the utility of a data chunk depends on whether it is uploaded

in a timely fashion or not. Therefore, we define a utility function, f , as a function

of ∆, which is the difference between the delivery time and the deadline, i.e.

∆(ai, {a}, {u}, v, λ, l) = t(ai, {a}, {u}, v, λ, l) − d(ai). The utility function, f ,260

should be chosen based on application-specific requirements. One important

characteristic of the function is that it should be monotonically decreasing over

∆ ∈ R, which indicates that utility declines as delivery gets late. For many

applications, arriving early does not matter much as long as the chunk arrives

prior to the deadline. In this way, f(∆) = 1,∀∆ 6 0. In the planning phase,265

the utility can be estimated by f(∆e), based on the estimated delivery time, i.e.

∆e(ai, {a}, {u}, ve, λ, l) = te(ai, {a}, {u}, ve, λ, l)− d(ai).

We always hope to deliver all data chunks in a timely manner – when this is

not possible, we tend to find a plan that maximizes the overall utility of them.

The weighted overall utility (WOU) U = U({a}, {u}, v, λ, l) of a plan

λ is the weighted average utility of all data chunks, with weights being their

importance levels, assuming local ordering l. i.e.

U = U({a}, {u}, v, λ, l) =

N∑
i=1

p(ai) ·f
(
∆(ai, {a}, {u}, v, λ, l)

)/ N∑
i=1

p(ai) (1)

The WOU is used as a major performance indicator to compare various

plans. A plan that ends up with a higher WOU is considered to be a better

plan. Our objective is to find an upload plan for a MDC so as to maximize

this WOU. However, when we make a plan before the MDC departs, due to the

possible dynamics in the task which should not have occurred yet in this phase,

the actual delivery time is unknown, so is the actual delay ∆. Therefore, in

this phase, we have to use the estimated weighted overall utility (EWOU)

Ue = Ue({a}, {u}, ve, λ, l) in planning heuristics as the objective function to

maximize, which is

Ue =

N∑
i=1

pe(ai) · f
(
∆e(ai, {a}, {u}, ve, λ, l)

)/ N∑
i=1

pe(ai) (2)

11

Unlike ∆, which is obtained directly at runtime, ∆e(ai, {a}, {u}, ve, λ, l) =270

te(ai, {a}, {u}, ve, λ, l)− d(ai) has to be estimated by the planner. We provide

detailed steps in Section 2.6 to show how the planner makes this estimation.

2.4. Problem Formulation—the Upload Planning Problem

With the assumptions and terms above, the upload planning problem is

formulated as the following constrained optimization problem:275

Given an ordered list of data chunks {ai}, i = 1, . . . , N , with increasing

x(ai), and an ordered list of opportunities {uj}, j = 1, . . . ,M , with increasing

x(uj), we want to find plan λ and its corresponding plan matrix Λ, to maximize

the WOU U({a}, {u}, v, λ, l) subject to the cause-and-effect constraint, i.e.

max
λ

N∑
i=1

p(ai) · f
(
∆(ai, {a}, {u}, v, λ, l)

)/ N∑
i=1

p(ai)

s.t. Λi,j 6 Ci,j ,∀i = 1, . . . , N,∀j = 1, . . . ,M (3)

The upload planning problem above is proven to be NP-hard, by showing

the 0-1 knapsack problem can be reduced to an upload planning problem.

2.5. Proof of Computational Complexity

We prove the constrained optimization formulation of the upload planning

problem, shown in Equation (3), is NP-hard, even with all information made280

available, complexity significantly reduced, and no dynamicity introduced as is

assumed in the static planning phase. Such computational complexity is proven

by showing that the 0-1 knapsack problem, which is known to be NP-complete,

can be reduced to an (actually simple case of) upload planning problem, where

(a) There is only one upload opportunity that represents the knapsack; (b) There285

are multiple data chunks representing items, such that the size and priority of

data chunks are the weight and value of items; (c) An on-time upload indicates

an item being placed in the knapsack.

Consider the following 0-1 knapsack problem: Given a set of N items, num-

bered 1, ..., N , each with a value vi > 0 and a weight wi > 0, along with a

12

maximum weight capacity W ,

max

N∑
i=1

vixi

s.t.

N∑
i=1

wixi 6W, and xi ∈ {0, 1} (4)

According to our definition of utility, f(∆) ∈ [0, 1], and f should be mono-

tonically decreasing over ∆ ∈ R. Therefore, according to the monotone conver-

gence theorem,

lim
x→+∞

f(∆) = 0

lim
x→−∞

f(∆) = 1

Let

∆+ = min {∆ > 0|f(∆) 6 min{vi}/max{vi}}

∆− = max{∆ 6 0|1− f(∆) 6 min{vi}/max{vi}}

∆0 = max{∆+,−∆−, 1}

In this way, we can reduce the original 0-1 knapsack problem as in Equation

(4) to an upload planning problem with M = 1 (only one) upload opportunity290

and N data chunks, along with randomly chosen positive constant moving speed

v(x) = V,∀x > 0, x 6= x1 > 0 and data collecting rate Ra.

Let

Tc = 0

u1 = (x1, r1), where x1 > 0, and r1 = 1/2∆0

x(ai) = 0

s(ai) = wi/min{w},∀i = 1, ..., N

p(ai) = vi/max{v},∀i = 1, ..., N

If we set all d(ai),∀i = 1, ..., N to

d(ai) = d0 =

N∑
k=1

wk/Ra
min{w}

+
x1
V

+
W/r1

min{w}
+ ∆0

13

then only a subset of all data chunks with their total size being no greater

than W/min{w} can be uploaded before their common deadline. According to

our previous settings, any data chunk that is scheduled to be overdue cannot295

contribute a utility more than even the least important data chunk that is

scheduled on-time. In this way, choosing from items to put into the knapsack

is equivalent to choosing from the data chunks to upload at u1, i.e. xi = Λi,1.

Hence, the 0-1 knapsack problem in Equation (4) can be reduced to an up-

load planning problem formulated as in Equation (3). This means our simplified300

formulation of the upload planning problem is at least as hard as the 0-1 knap-

sack problem, which is known to be NP-complete. In other words, the upload

planning problem is at least as hard as the hardest problems in NP. Therefore,

the upload planning problem is NP-hard.

2.6. Estimation of Overall Utility305

As we mentioned earlier in Section 2.3, the planner needs to make an esti-

mation of the overall utility, i.e. the EWOU Ue, when making a plan for the

MDC before it departs. Therefore, we provide detailed steps below to show how

te(ai, {a}, {u}, ve, λ, l) can be calculated by static planners with expectation-

s/estimation on several data/opportunity parameters, so that EWOU Ue can310

be computed based on te.

The estimated delivery time te(ai, {a}, {u}, ve, λ, l) is the sum of three major

components: the total moving time tm(ai, ve), the total data collection time

ta(ai, {a}, λ), and the total uploading time tu(ai, {a}, {u}, λ, l), referring to

the time spent on the corresponding activities before ai is uploaded at λ(ai).315

The speed of MDC v(x) has no definition at any data site or any upload

opportunity. However, for its estimation ve(x), if we assign a finite positive

value for it at those sites, then the moving time can be computed with

tm(ai, ve) =

∫ x(ai)

0

dx

ve(x)

This integral, however, might be too heavy for planners. An easier way to

estimate the moving time is to estimate the average moving speed from the

14

beginning of path to location x as v̄e|x0 , so the estimated moving time

tm(ai, ve) =
x(ai)

v̄e|x(ai)
0

(5)

The total data collection time is the time spent on all data sites that are

located before λ(ai). Since Ci,j = 1 iff x(ai) 6 x(uj), we have

ta(ai, {a}, λ) =

N∑
k=1

Ck,λi ·

(
Tc +

se(ak)

Ra

)
(6)

where Tc is an estimation of the time to establish connection at an upload oppor-

tunity. Therefore, for a specific ai, it takes O(N) time to compute ta(ai, {a}, λ).

The total uploading time tu(ai, {a}, {u}, λ, l) spent before ai is uploaded

can be further divided into three parts: the uploading time spent before λ(ai),

denoted as tu1(ai, {a}, {u}, λ), the uploading time spent at λ(ai) to upload320

other data chunks before ai according to l, denoted as tu2(ai, {a}, {u}, λ, l),

and the time to upload ai itself, denoted as tu3(ai, {u}, λ).

Since {uj} is given in increasing order of x(uj), given an M -by-M up tri-

angular binary matrix B, where Bi,j = 1 iff i < j, the uploading time spent

before λ(ai) can be written as

tu1(ai, {a}, {u}, λ) =

M∑
h=1

Bh,λi ·

(
Tc ·

N∨
k=1

Λk,h +

N∑
k=1

Λk,h ·
se(ak)

re(uh)

)
(7)

whose computation takes O(MN) time for a specific ai.

The uploading time spent at λ(ai) to upload other data chunks before ai is

tu2(ai, {a}, {u}, λ, l) = Tc +

N∑
k=1

Λk,λi
· l(ak,ai, λ) · se(ak)

re(λ(ai))
(8)

whose computation takes O(N) time.

The time to upload ai itself is

tu3(ai, {u}, λ) =
se(ai)

re(λ(ai))
(9)

Then the estimated delivery time te(ai, {a}, {u}, ve, λ, l) can be acquired

15

from Equations (5-9) for any ai in O(MN) time, using

te(ai, {a}, {u}, ve, λ, l) = tm(ai, ve) + ta(ai, {a}, λ)

+ tu1(ai, {a}, {u}, λ) + tu2(ai, {a}, {u}, λ, l)

+ tu3(ai, {u}, λ)

(10)

Finally, we are able to calculate the EWOU Ue({a}, {u}, ve, λ, l) out of the325

estimated delivery time te(ai, {a}, {u}, v, λ, l) of all data chunks using Equation

(2). Therefore, the overall time complexity to calculated the EWOU of a given

static plan λ is O(MN2).

3. Algorithms/Policies for Upload Planning

In this section, we will propose a family of feasible techniques, including two330

static planning algorithms and three dynamic adaptation policies, to address

the problem using our two-phase approach described in Section 1.2.

3.1. Static Planning Algorithms

Static planning is the first phase of the proposed approach, which is executed

offline on the backend server, before the departure of the MDC. Therefore,335

in this phase, it is acceptable and expected to optimize upload plans using

comprehensive and computational intensive algorithms.

In this paper, we propose two computational techniques for constructing the

upload plan. One is based on the genetic algorithm (GA), and another uses an

iterative greedy heuristic, Balanced Deadline-Opportunity-Priority (BDOP).340

3.1.1. Genetic Algorithm

Due to the NP-hardness of our upload planning problem, we use heuristics to

help with the optimization. Based on the definitions and problem formulation,

we derived a simple implementation of a genetic algorithm (GA). The intuition

here is, in a given problem setting, for each individual data chunk, some upload345

opportunities are generally “better” (though this is possibly affected by the

schedule of other data chunks) than other opportunities, in terms of data rates

16

and distance from the data site where the data chunk is collected. If we compare

data chunks to loci (locations of genes) and different choices of opportunities

to genes/alleles, then “better” opportunities are alleles who contribute more to350

the overall fitness. In this way, the upload planning problem is comparable to

the evolution of a population, where each individual is a feasible solution to the

optimization problem.

Based on such intuition, our genetic algorithm (GA) is derived as follows:

Plan vector j is a chromosome, where ji (the upload opportunity chosen for355

data chunk i) is a gene. An individual has only one chromosome. The EWOU

Ue({a}, {u}, ve, λ, l) is used as the fitness. The initial population contains 100

individuals. Since it is easy to obtain a “plan vector” j that corresponds to the

näıve approach – simply let ji = min{j|x(uj) > x(ai)}, we add such a “näıve

plan vector” to the initial population to guarantee the bottom line of GA based360

optimization. In the reproduction phase, 5% elite individuals are kept as is, and

80% of children are generated from a random binary array based crossover with

constraint checks.

According to Section 2.3, the time it takes to calculate the EWOU of a

given plan λ is O(MN2). Therefore, the fitness calculation (bottleneck step) of365

each generation takes O(MN2) multiplied by the population size to complete.

Note that it generally takes tens of generations of “evolution” before GA finds

a maxima, so in practice, execution time of GA is usually longer.

3.1.2. Balanced Deadline-Opportunity-Priority

In this section we propose the Balanced Deadline-Opportunity-Priority370

(BDOP) algorithm. BDOP chooses data chunks in an earliest deadline first

(EDF) based greedy manner, but it changes the plan when a previously planned

low priority data chunk can be removed to fit in a high priority chunk, which

we refer to as a sacrifice. BDOP is designed with the following concerns: (a)

Data chunks with earlier deadlines should be uploaded at earlier opportunities,375

in case they expire in the future. (b) Upload opportunities with faster upstream

bandwidth should be preferred, in order to save time for other data chunks. (c)

17

In limited time/resource, important data chunks should be given higher priority

in planning compared to less important data chunks, in order to improve the

overall utility of collected data.380

This algorithm is sketched in Algorithm 1. BDOP starts with an empty plan

j, and all data chunks are put in set W. In every big loop (Ln 4–24), it takes

out one ai from W. First, the algorithm tries to find if ai can be planned in

time and after all other previously planned chunks. In fact, these chunks are

not affected by ai (Ln 8). If it succeeds, then ai is planned. Otherwise, it tries385

to find a set of previously planned chunks to be sacrificed for ai (Ln 11–22).

At each iteration, a sacrificed chunk is picked in a lowest-priority-first manner,

with the size being the tiebreaker (Ln 12). The algorithm then stays in the

inner loop (Ln 7–23) until ai can be planned in time (Ln 9), or the sacrifice is

too big compared with the utility gain ai brings (Ln 16). Then it either delays390

ai and reverts sacrificed chunks (Ln 18), or plans ai for in-time delivery and

puts sacrificed chunks back into W (Ln 20). To simplify the computation of the

utility gain brought by ai, we use p(ai) as its estimation. Note that p(ai) is the

maximum possible utility gain.

In BDOP, ak can be sacrificed for ai only if it is less important than ai.395

Therefore, if ak has been sacrificed for ai, ai will never be sacrificed for ak.

Note that sacrifice is monotonically made in an increasing order of importance

levels, so ak will not be sacrificed for ai for more than once. Thus, the total

number of sacrifices is no greater than O(N2). In each loop the time spent on

calculating f(∆e) (the bottleneck step) is O(MN). Therefore, the algorithm400

terminates in O(MN3) time.

3.2. Dynamic Adaptation Policies

Dynamic adaptation is the second phase in our two-phase approach and is

executed on the MDC during task runtime. Hence, the policies for this phase

should be simple enough to run on mobile devices. Since the MDC cannot405

change the path or the points to visit, dynamic adaptation only happens at

upload opportunities. In this phase, more information becomes available in

18

addition to the prior knowledge: (a) The MDC has a static plan λ. (b) When

the MDC arrives at an opportunity uj , it has information regarding the actual

characteristic of data that will be uploaded. (c) It is able to estimate the410

bandwidth r as it uploads. This phase is intended to keep the benefits of the

static plan (e.g. the global view of the task in optimization) while adapting to

possible dynamics in networks, data, and movement along the task execution.

In this part we design three adaptation policies, namely (a) strict to the

plan, (b) strict to the plan’s timeline, and (c) an adaptively balanced policy415

based on Lyapunov control.

3.2.1. Strict Static Plan

Strict static plan represents a purely planned approach. It does not adapt to

runtime dynamics, but makes full use of the static plan. In this policy, when the

MDC arrives at uj , it tries to upload all ai s.t. λ(ai) = uj as specified by plan420

λ. If uj is not available for any reason, these data chunks will not be uploaded

in later opportunities, but carried back by the MDC physically.

3.2.2. Strict Timeline

The strict timeline policy is another attempt to stick to the original plan.

Instead of keeping the plan unchanged, the policy maintains the plan’s timeline.

In other words, we try to complete all uploads at each opportunity u within

the expected time given by plan λ. To implement this, we need to compute the

expected completion time, te(uj , {a}, {u}, ve, λ) as follows.

te(uj , {a}, {u}, ve, λ) = max {te(ai, {a}, {u}, ve, λ, l)|λ(ai) = uj} (11)

In the actual implementation, te(uj) for each opportunity can be calculated

by the static planner in the planning phase, so it would not become an extra425

overhead for the MDC.

If the MDC has finished all data chunks planned at the current opportunity

but there is still time left, it tries to find some high-priority data chunks (better

still within their deadlines) to upload with the objective of achieving higher

utility.430

19

3.2.3. Adaptation Using Lyapunov Control Strategy

We devise another dynamic adaptation technique using Lyapunov control

[32]. Lyapunov control is usually applied to systems that evolve over time with

active “queues”. The overall goal of the framework is to maximize the time-

averaged reward under the constraint that all “queues” remain bounded. These435

queues are modeled as system states, and their growth refers to the system’s

tendency towards instability. The framework defines a Lyapunov function over

the system states (i.e., the current queue sizes) and tries to keep the Lyapunov

drift, the expected difference between the Lyapunov function values at two suc-

cessive steps, as small as possible, which ultimately ensures the system reaching440

its goal over time.

In our upload plan, we define the state of our system, φ(t) at time slot t, by

a vector of two queues: φ(t) = [Q(t), T (t)]. A time slot t actually corresponds to

an upload opportunity u encountered by our MDC. Queue Q(t) refers to queue

backlog at the MDC, i.e. the total size of items yet to be uploaded, and T (t)

measures the amount of time elapsed since the MDC started its operation. Let

β be the time that is supposed to have elapsed according to the static plan λ

constructed a priori. This value is updated at every upload opportunity when

the MDC arrives there. Ideally, we want the MDC to take actions to keep Q(t)

low and T (t) close to β. Hence, a quadratic Lyapunov function is defined as

L
(
φ(t)

)
=

1

2
Q2(t) +

1

2

(
T (t)− β

)2
(12)

Then the Lyapunov drift is

∆(t) = E
[
L
(
φ(t+ 1)

)
− L

(
φ(t)

)∣∣φ(t)
]

(13)

Let R(t) define some reward function that the system tries to maximize.

Then, the strategy to adopt according to the Lyapunov theory [32] is to take

actions at time slot t that minimizes

∆(t)− V ·R(t) (14)

with some control parameter, V . At each upload opportunity, our MDC chooses

items to upload, which reduces Q(t) but increases T (t). Let X(t) be the total

20

size of the items selected to upload. Therefore, we have Q(t+ 1) = Q(t)−X(t),

T (t+ 1) = T (t) +X(t)/r(t), where r(t) = r(u) is the data uploading rate. It is

shown that ∆(t) ∼ B + E
[
− Q(t) ·X(t) +

(
T (t) − β

)
·X(t)/r(t)

]
, where B is

a constant that approximates
(
1 + 1/r2(t)

)
·E
[
X2(t)

]
. In our case, the reward

R(t) is the total utility of selected data chunks. Let σ(a) be 1 if chunk a is

selected (and 0, otherwise), then we obtain

X(t) =
∑
a

σ(a) · s(a)

R(t) =
∑
a

σ(a) · p(a) · f
(
T (t) + s(a)/r(t)− d(a)

)
Hence minimizing Equation (14) is equivalent to maximizing

∑
a

(
σ(a) · s(a) ·

(
Q(t)−

(
T (t)− β

)
/r(t)

)
+V · p(a) · f

(
T (t) + s(a)/r(t)− d(a)

)) (15)

which reaches its maxima when we let σ(a) be 1 for each a that makes the

summed expression in Equation (15) positive.

In actual implementation, each time the MDC arrives at an opportunity

or finishes uploading a data chunk, it checks its buffer and picks up the data445

chunk that results in the maximum positive value for the summed expression

in Equation (15) and loops until no such chunk is found. This takes O(1) for

each data chunk since all the parameters should be known to the MDC when

this adaptation occurs, and takes at most O(N) at each upload opportunity,

for all data chunks collected but yet to be uploaded. Since Q(t), T (t)− β, and450

p(a) ·f all have different scales and units, we need to normalize them with some

coefficients. The tuning results are, V = 1, the coefficient of Q(t) be set to

the magnitude of 10−6, and that of T (t) be set to the magnitude of 10−4. The

performance is not very sensitive to coefficient changes as long as they are at

those magnitudes.455

21

(a) Architecture of SCALECycle client (b) Prototype system

Figure 2: The SCALECycle platform.

4. Prototype Platform and Testbed

The upload planning solutions above were tested in the context of the Safe

Community Awareness and Alerting Network (SCALE) project, an IoT system

implemented by our team [4] to extend smart communities with commodity

sensor devices. We have already deployed SCALE on the campus of Univer-460

sity of California, Irvine, and at various locations in Montgomery County, MD,

including Victory Court Senior Apartments and Thingstitute, a re-purposed

courthouse for community-centric innovation programs. To validate the prob-

lem motivations and assumptions in real smart community/city settings and

collect data to drive our experiments, we developed SCALECycle, a mobility465

enabled IoT system and its prototype. We conducted initial measurements

in our two SCALE deployments, which are real-world smart community IoT

systems. The data we collected in those real settings have revealed the hetero-

geneity in community IoT deployments and network infrastructures [33], which

justified the need for the proposed problem and validated several assumptions470

we made.

22

4.1. The SCALECycle Mobile Sensing Platform

SCALECycle leverages SCALE [4], a previous developed community IoT

platform. It provides us with a real-world implementation of smart commu-

nity IoT systems, and augments the in-situ sensing capabilities in community475

deployments with mobility. A SCALECycle node (MDC) is a sensor box with

a Raspberry Pi Model B as the basic computing device. It supports multiple

types of sensors (see below) and networks interfaces. Compared to the SCALE

box, it is enhanced with mobility support (GPS, battery, local storage, etc.)

In our SCALECycle prototype, the mobile node has an air quality sensor480

(TGS 2600), a Wi-Fi adapter, and a Bluetooth adapter. The air quality sensor

collects air pollution data. The Wi-Fi adapter is used as both the network

interface and a sensor that reports Wi-Fi coverage and quality data. The user

can interact with the node using an Android phone running a Bluetooth terminal

to send commands and acquire statistics and debug information. A Bluetooth485

GPS module is paired with the Raspberry Pi to provide location information, so

the client can associate sensed events with geotags. The mobile node is powered

by a 19,000 mAh USB battery, which is sufficient for 10 hours’ operation. The

device is mounted on a bicycle as is shown in Figure 2b – that is where the

name SCALECycle comes from.490

The SCALECycle client running on the Pi provides a local pub/sub bro-

ker that supports different types of applications. The software architecture of

SCALECycle is shown in Figure 2a. Client applications include virtual sensors

that generate sensed data and events, event sinks that consume these events and

publish them to the backend with various protocols, a network manager that495

monitors the availability of multiple networks, an event reporter that dispatches

events to different events sinks, and several other applications that implement

auxiliary functions (e.g. a lightweight location manager that records GPS vir-

tual sensor readings and tags other events with GPS coordinates). This flexible

framework allows developers to build virtual sensors and event sinks for their500

own scenarios, or even deploy their own auxiliary applications to implement

more complicated functionality. Applications exchange data and events via the

23

Figure 3: Wi-Fi heatmaps created with SCALECycle for UCI campus and Montgomery

County testbeds.

internal broker. Most of the time, the client publishes data to the cloud data

exchange service using the MQTT [34] protocol. When the device is offline, the

event reporter redirects the data to the database manager, which keeps them505

in a local database for delivery at a latter time when the device is reconnected.

Cloud applications subscribe to the data exchange service, and use the data in

further analysis.

4.2. Initial Measurements on Real Testbeds

The initial measurements are carried out in the two real-world testbeds men-510

tioned earlier. Measurements include the RSSI and link quality of Wi-Fi access

points, the upload bandwidth at several spots with relatively good Wi-Fi cover-

age, and the total amount of sensor data that is generated in a certain amount

of time. In the Montgomery County, MD testbed, the county’s guest network

MCGUEST covers areas around the business park as in Figure 3. Unfortunately,515

this network blocks the MQTT protocol for security concerns. For validation,

we used two free public Wi-Fi APs we found close to our deployments, plus two

SCALE Wi-Fi APs we placed in the Victory Court Senior Apartment and the

Red Brick Court House for extended coverage. We tested the upload through-

24

50 150 250 350 450 550 650 750 850 950

Data uploading rate (KB/s)

0

5

10

15

20
F

re
q
u
e
n
c
y

(a) Montgomery County testbed

50 150 250 350 450 550 650 750 850 950

Data uploading rate (KB/s)

0

2

4

6

8

10

12

F
re

q
u
e
n
c
y

(b) UCI campus testbed

Figure 4: Initial measurements for Wi-Fi upload rates.

put to the MQTT broker at these APs. Figure 4a is a histogram for speed520

test results at one of the four APs. The mean rate is 500 KB/s, and the stan-

dard deviation is 212 KB/s. The second testbed, the UCI campus is a good

example for a Wi-Fi covered community. The Wi-Fi network UCInet Mobile

Access covers most areas on campus. The Wi-Fi heatmap in Figure 3 shows

the coverage of the campus network on the ring road around the park in the525

center of the campus (known as Aldrich Park). We can see even the campus

network (intended for ubiquitous Internet access) does not provide uniformly

good coverage. On the heatmap, we picked seven points with relatively good

link quality and tested the upload throughput to the MQTT broker. A his-

togram of the speed test results is shown in Figure 4b. The mean is 513 KB/s,530

and the standard deviation is 160 KB/s.

During the tests, detailed JSON messages containing original data are gen-

erated by our three virtual sensors at a rate of approximately 1–5 KB/s – it

varies since the Wi-Fi coverage virtual sensor reports more data when it detects

more access points. Similarly, an in-situ sensing node should generate several535

megabytes of data in a few hours. Traffic conditions and slopes may lead to an

up-to-50% change in movement time compared with the expectation computed

from the average speed. These measurements were used to drive the simulation

studies below.

25

5. Performance Evaluation and Results540

Due to the limited scale of real-world deployments, the relatively long time

to run real experiments, and the lack of diversity in real settings, we derive syn-

thetic configurations for simulated experiments to demonstrate the effectiveness

of our proposed approach. Simulation parameters have been designed/tuned

to track the real-world observations and measurements to best reflect the real-545

world scenarios and environment.

5.1. Experimental Environments and Simulation Setup

Our simulations are mostly done in the QualNet simulator [35]. Data ex-

change is implemented in a customized application-layer traffic generation pro-

tocol in the user library. All wireless communication goes through 802.11a/g.550

Bandwidth and transmission powers are tuned to reflect the data uploading rate

and RSSI we measured in real settings. The QualNet simulations were done on

a Dell OptiPlex 755 PC, which has an Intel Core 2 Duo E6550 dual core 2.67

GHz CPU, and 4.00 GB of DDR2 SDRAM. The OS is Ubuntu 14.04 LTS 64-

bit. The simulator is a QualNet EDU 7.3 compiled from the source with our555

customized user application.

Since QualNet EDU license allows only up to 50 nodes per scenario, and the

simulation takes long time, we could not scale up the experiments in QualNet.

Thus, medium and large cases were simulated in MATLAB R2015B. However,

comparing results on small test sets from QualNet simulations and from MAT-560

LAB simulations, we observed significant correlation – the results were mostly

similar in values and consistent in trends. Therefore, we believe the MATLAB

simulations provide reasonable estimations on actual performance in medium

and large settings.

Using data collected on community testbeds, we created test cases at mul-565

tiple scales as is shown in Table 1. We compared our two-phase approach

with the näıve and purely opportunistic approach (referred to as “first oppor-

tunity”). For our two-phase approach, since we have two algorithms for static

26

planning and three policies for dynamic adaptation, there will be six combi-

nations to compare: GA only, BDOP only, GA-ST, BDOP-ST, GA-Lyapunov,570

and BDOP-Lyapunov.

To test the effect of network availability and capacity, the different ap-

proaches are compared in experiments with different number of upload oppor-

tunities (3–30 for small cases, 4–40 for medium cases, and 10–200 for large

cases) and different standard deviation of uploading bandwidth (0–2.23 Mbps575

for all cases). To test the effect of data heterogeneity and data dynamics, the

approaches are compared using different average size of data chunks (1–10 MB

for all cases) and different level of dynamics in data size. To test the effect of

mobility dynamics, we experiment with different number of upload opportuni-

ties (4–40 for medium cases) and different level of dynamics in movement. To580

test the scalability of the approaches, we use different number of upload oppor-

tunities (the same settings for medium and large cases) and different number of

data chunks (10–200 for medium cases and 100–2,000 for large cases).

5.2. Performance Evaluation Metrics

We use three metrics to compare the performance of studied approaches: the585

weighted overall utility (WOU), the fraction of important data chunks uploaded

in time, and the total time spent to complete all data collection and upload.

5.2.1. Weighted Overall Utility (WOU)

In our experiments, we used the utility function f defined below as a piece-

wise function, which is flat for ∆ 6 0 and decreases exponentially for ∆ > 0.

f =

1 ,∆ 6 0

exp(−∆/Tf) ,∆ > 0

(16)

where 1/Tf > 0 is the attenuation coefficient. In our tests, we used Tf = 30/ ln 2,

so the utility of a single data chunk halves every 30 seconds after its deadline.590

The weighted overall utility (WOU) is a comprehensive performance index

we defined in Equation 1 to measure the overall performance of a plan. In dy-

27

namic simulations, WOU can be calculated from statistics. In static simulations,

we calculate EWOU Ue({a}, {u}, ve, λ, l) from Equation (2) for comparison.

5.2.2. Fraction of Important Data Chunks Uploaded In Time595

The fraction of important data chunks that are uploaded in time is a straight-

forward metric. Intuitively, an intelligent plan should accommodate important

chunks first to maximize the overall utility. This fraction can be calculated by

comparing t(ai, {a}, {u}, v, λ, l) with d(ai). In static tests, te(ai, {a}, {u}, v, λ, l)

is used in place of t.600

5.2.3. Time Consumption to Complete All Data Collection

The total time required to complete all data collection can also be used as

a benchmark to evaluate the planning algorithms, as we expect the MDC to

complete the assigned task in as short time as possible. The total time is the

completion time at the last opportunity, t(uM , {a}, {u}, v, λ). In MATLAB605

static simulations, its estimation te(uM , {a}, {u}, ve, λ) is used.

5.3. Simulation Results

With the simulation results we have, we are able to compare static planning

algorithms presented in Section 3.1 and dynamic adaptation policies discussed

in Section 3.2 respectively to validate and demonstrate the applicability and610

effectiveness of our proposed algorithms in both phases. We also compare our

two-phase approach using different algorithm combinations, with corresponding

static-only (completely planned) approaches and the näıve (completely oppor-

tunistic) approach to show the effectiveness and competitive performance of the

two-phase optimization.615

As we proceeded with our experiments, algorithms or algorithm combina-

tions that often appeared to be defective (e.g. worse than the näıve approach)

or obviously inefficient were removed from future comparisons, which allowed

us to focus on techniques that worked well.

28

0 10 20 30 40

Number of upload opportunities

0.3

0.4

0.5

0.6

0.7

0.8

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y
Using BDOP for static planning

Medium test cases
Average chunk size = 5 MB

Strict static plan

Strict timeline

Lyapunov Control

(a)

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

Strict static plan

Strict timeline

Lyapunov Control

(b)

Figure 5: Simulation results for effect of network availability and capacity, using BDOP for

static planning, comparing WOU of dynamic adaptation policies.

5.3.1. Basic Comparisons and Effect of Network Availability620

In these basic comparisons, we first compared algorithms for the two phases

separately, and then compared our two-phase approaches with static-only ap-

proaches and the näıve approach (a.k.a. “first opportunity”). These results are

displayed in Figure 5 and 6.

Figure 5 shows the results on medium sets that compares the three dynamic625

policies. In all cases, the static plans were generated by the Balanced Delay-

Opportunity-Priority (BDOP) algorithm. Results show that the Lyapunov op-

timization performed better than the “strict static plan”, and that the “strict

timeline” policy exhibited the worst performance, especially for larger number

of upload opportunities as shown in Figure 5a and for smaller data chunks as630

shown in Figure 5b. Since the “strict static plan” represents the completely

planned approach and requires least computation, we concluded that “strict

timeline” was not effective, and would be omitted from future experimentation.

Comparisons of static algorithms on small sets show that GA and BDOP per-

formed similarly well; hence other combinations with both these static planning635

algorithms were compared with the näıve approach.

In Figure 6, we compare the performance of multiple combinations of static

planning algorithms and dynamic adaptation policies, as the number of upload

29

0 5 10 15 20 25 30

Number of upload opportunities

0.5

0.6

0.7

0.8

0.9

1

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

First opportunity

Balanced DOP

Genetic algorithm

BDOP-Lyapunov

GA-Lyapunov

(a)

0 5 10 15 20 25 30

Number of upload opportunities

0.5

0.6

0.7

0.8

0.9

1

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

First opportunity

Balanced DOP

Genetic algorithm

BDOP-Lyapunov

GA-Lyapunov

(b)

Figure 6: Simulation results for effect of network availability and capacity, comparing WOU

of multiple approaches.

opportunities increases. Figure 6a shows the QualNet simulation results on

a small test set. GA-Lyapunov and BDOP-Lyapunov performed equally well.640

Compared with the näıve approach, the improvement in WOU was about 14–

24%. Also note that both of the two-phase approaches performed better than

corresponding static-only approaches, which shows the effect of the dynamic

adaptation phase in our two-phase approach. Figure 6b shows the MATLAB

simulation results on the same test set. Compared to the QualNet experiments,645

MATLAB simulations modeled fewer details of the physical networks and pro-

tocol stack implementation. This led to less fluctuation and relatively better

results. We also note that the relative positions and trends of the lines were

similar.

Figure 7 shows the effect of network heterogeneity and variance in network650

availability. Two static algorithms were compared with the näıve approach in a

medium test set. We can see both BDOP and GA performed much better than

the näıve approach, especially when the variance among upload opportunities

increased. The reason might be that planning with a global view of all data

chunks and upload opportunities (by the static planner) enables the MDC to655

leverage the faster opportunities and avoid the slower ones, while there was

no way for the opportunistic näıve approach to do the same. This comparison

30

0 50 100 150 200 250 300

STDEV of upload bandwidths (KB/s)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

F
ra

c
ti
o
n
 o

f
im

p
.
d
a
ta

 c
h
u
n
k
s
 u

p
lo

a
d
e
d

Medium test cases
No. of opportunities = 20
Average chunk size = 5 MB

First opportunity

Balanced DOP

Genetic algorithm

Figure 7: Simulation results for effect of variance in network availability.

shows the significance of a global plan, especially in communities and cities

where connectivity is not uniformly good.

5.3.2. Effect of Data Heterogeneity660

Results in Figures 8a and 8b show the QualNet simulation results for our

two-phase approach were more stable as the size of chunks increased, compared

with the static-only approaches and the näıve approach. The improvement in

WOU can be as big as 36–60% for larger data chunks, and the reduction in total

time was up to 30%, compared with the näıve approach. Interestingly, though665

the BDOP based approaches (static and two-phase) performed similarly well

with GA based approaches in terms of WOU as is shown in Figure 8a, BDOP

seemed to save a little more time than GA in Figure 8b. Figures 8c and 8d are

MATLAB simulation results on the same test sets. Again, we can see the relative

positions and trends of the lines were mostly the same. Together with results670

in Figure 6b, the use of MATLAB simulations on larger-scale experiments (e.g.

in Section 5.3.5) is justified.

Figure 9 compares the running time of static planning algorithms, where

GA ran much slower than BDOP. Results also show that, as the complexity

of problem increased (e.g. data chunks became larger), the running time of675

GA increased like linearly. With larger test sets, we found it took more than

20 minutes to generate a plan for one scenario with 1,000 data chunks using

GA, but the performance outcome was not better than BDOP (actually slightly

31

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

First opportunity

Balanced DOP

Genetic algorithm

BDOP-Lyapunov

GA-Lyapunov

(a)

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

2000

4000

6000

8000

10000

12000

T
im

e
 t
o
 c

o
m

p
le

te
 a

ll
d
a
ta

 c
o
lle

c
ti
o
n
 (

s
e
c
)

First opportunity

Balanced DOP

Genetic algorithm

BDOP-Lyapunov

GA-Lyapunov

(b)

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

0.5

0.6

0.7

0.8

0.9

1

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

First opportunity

Balanced DOP

Genetic algorithm

BDOP-Lyapunov

GA-Lyapunov

(c)

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

2000

4000

6000

8000

10000

12000

T
im

e
 t
o
 c

o
m

p
le

te
 a

ll
d
a
ta

 c
o
lle

c
ti
o
n
 (

s
e
c
)

First opportunity

Balanced DOP

Genetic algorithm

BDOP-Lyapunov

GA-Lyapunov

(d)

Figure 8: Simulation results for effect of data heterogeneity.

worse, perhaps due to the increased size of the solution space). Therefore, we

will not evaluate GA in scalability studies.680

5.3.3. Effect of Data Dynamics

Figure 10 displays two sets of simulation results on a medium test set, show-

ing the effect of dynamics in data chunks (i.e uncertainties in chunk size and data

priority). Different markers represent different levels of dynamics. The dynam-

ics are implemented by the half proportional range of the uniformly distributed685

noise added to the size of each data chunk, this also represents the probability

that the priority of each data chunk is elevated by one level. Different line styles

represent different approaches: solid lines for two-phase approaches, dashed

lines for static-only approaches, and dotted lines for the näıve approach.

32

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

0

50

100

150

200

250

R
u
n
n
in

g
 t
im

e
 (

s
e
c
)

First opportunity

Balanced DOP

Genetic algorithm

Figure 9: Comparison of running time of static planning algorithms.

In the first set of experiments (Figures 10a and 10b), the expectation of690

chunk size remained unchanged. In the second set of experiments (Figures

10c and 10d), the expectation increased by the half proportional range. For

example, if half range l/2 = 20% chunk size, a data chunk that was expected

to be 5 MB may end up being [5 × (1 ± 20%)] MB in the first experiment, or

[5×(1+20%±20%)] MB in the second experiment, and a data chunk of medium695

importance may turn out to be of high importance with a chance of 20%.

In Figures 10a and 10b, the three groups of tightly bundled curves in both

figures suggested the dynamics in chunk size and data priority had limited effect

on the overall utility of collected data, as long as the noise added to chunk size

had a mean value of 0.700

Figures 10c and 10d show the two-phase approaches using Lyapunov for

dynamic adaptation always result in higher WOU, compared to correspond-

ing static-only approaches, when chunks are bigger than expected in average.

The decrease in WOU caused by data dynamics is also smaller in tests using

two-phase approaches, which means having Lyapunov control based dynamic705

adaptation for the second phase improves the resilience of planned operation

over data dynamics.

5.3.4. Effect of Mobility Dynamics

Figure 11 displays two sets of simulation results on a medium test set, show-

ing the effect of mobility dynamics (i.e uncertainties in moving time). We il-710

33

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

0

0.2

0.4

0.6

0.8

1

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

BDOP-Lyapunov

Noise = 20%

Noise = 50%

BDOP

First opportunity

(a) BDOP and BDOP-Lyapunov

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

0

0.2

0.4

0.6

0.8

1

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

GA-Lyapunov

Noise = 20%

Noise = 50%

GA

First opportunity

(b) GA and GA-Lyapunov

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

Noise = 0

Noise = 10%

Noise = 20%

Noise = 30%

Noise = 50%

(c) BDOP and BDOP-Lyapunov

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

Noise = 0

Noise = 10%

Noise = 20%

Noise = 30%

Noise = 50%

(d) GA and GA-Lyapunov

Figure 10: Simulation results for effect of different levels of data dynamics. CS stands for

“chunk size”.

lustrate results under different levels of dynamics (i.e. noise). In the graphs,

different line styles represent different approaches: solid lines for two-phase

approaches, dashed lines for static-only approaches, and dotted lines for

the näıve approach.

In the first set of experiments (Figures 11a and 11b), the expectation of715

moving time was unchanged. In comparison, in the second set of experiments

(Figures 11c and 11d), the expectation of moving time increased. For example,

under standard deviation µ = 20% moving time, a movement that was expected

to take 100 sec may end up taking [100×(1−20%)+y] sec in the first experiment,

or (100+y) sec in the second experiment, where y is an exponentially distributed720

random variable with λ = 1/µ = 1/20.

34

0 10 20 30 40

Number of upload opportunities

0.3

0.4

0.5

0.6

0.7

0.8

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

BDOP-Lyapunov

Noise = 20%

Noise = 50%

BDOP

First opportunity

(a) BDOP and BDOP-Lyapunov

0 10 20 30 40

Number of upload opportunities

0.3

0.4

0.5

0.6

0.7

0.8

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

GA-Lyapunov

Noise = 20%

Noise = 50%

GA

First opportunity

(b) GA and GA-Lyapunov

0 10 20 30 40

Number of upload opportunities

0

0.2

0.4

0.6

0.8

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

Noise = 0

Noise = 10%

Noise = 20%

Noise = 30%

(c) BDOP and BDOP-Lyapunov

0 10 20 30 40

Number of upload opportunities

0

0.2

0.4

0.6

0.8

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

Noise = 0

Noise = 10%

Noise = 20%

Noise = 30%

(d) GA and GA-Lyapunov

Figure 11: Simulation results for effect of different levels of dynamics in moving time.

In Figures 11a and 11b, the three groups of tightly bundled lines in both

figures suggested the dynamics in moving time had limited effect on the overall

utility of collected data, as long as the noise had a mean value of 0.

Figures 11c and 11d (when moving time is longer than expected in aver-725

age) show that the two-phase approaches which use the Lyapunov control for

dynamic adaptation always resulted in higher WOU, compared to the corre-

sponding static-only approaches. Similar to the results for data dynamics, the

decrease in WOU caused by mobility dynamics is also smaller with the two-

phase approaches, which means using Lyapunov control based dynamic adap-730

tation for the second phase also improved the resilience of planned operation

under mobility dynamics.

35

0 10 20 30 40

Number of upload opportunities

0.3

0.4

0.5

0.6

0.7

0.8

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y
Medium test cases
Average chunk size = 5 MB

First opportunity

Balanced DOP

BDOP-Lyapunov

(a)

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

Medium test cases
No. of opportunities = 20

First opportunity

Balanced DOP

BDOP-Lyapunov

(b)

Figure 12: Simulation results for demonstration of scalability.

0 50 100 150 200

Number of upload opportunities

0.5

0.6

0.7

0.8

0.9

1

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

First opportunity

Balanced DOP

(a)

0 2000 4000 6000 8000 10000

Average size of data chunks (KB)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
e
ig

h
te

d
 o

v
e
ra

ll
u
ti
lit

y

Large test cases

No. of opportunities = 40

First opportunity

Balanced DOP

(b)

Figure 13: Simulation results for demonstration of scalability on large test sets.

5.3.5. Scalability

Results in Figures 12 and 13 show that our approach worked well as the scale

of deployment increased. Figure 12 shows the results for medium test sets, and735

Figure 13 for large test sets. In Figure 12a, the WOU was improved by 38–46%

by our two-phase approach when there were more than eight opportunities, in

comparison to the näıve opportunistic operation. In comparing Figure 12 with

Figure 6 allows us to conclude that the advantage of our two-phase approach

was more obvious when the deployment scales up.740

Figure 13 compares the performance of BDOP with “first opportunity” on

large test sets, and shows that BDOP performs well and is more stable as the

36

system scales up. In summary, our two-phase approach using BDOP-Lyapunov

exhibits superior performance as compared to other strategies.

6. Related Work and Conclusion745

This paper addresses issues at the intersection between IoT systems and

mobile computing when deployed at scale in real world community settings.

Today, we observe increasing public interest in using IoT technologies in appli-

cations at personal and societal levels ranging from personalized healthcare to

clean environments. Recent research in the design and deployment of large scale750

IoT architectures in community and city-scale deployments have brought new

challenges to the forefront [1–5]. For example, the Community Seismic Network

(CSN) [6, 7] is a participatory IoT system to help with early alerting of earth-

quakes in Southern California using cheap accelerometers attached to residents’

personal computers and devices – resilient operation when there is large scale755

damage to infrastructures is a key challenge. The primary focus of IoT systems

has been the enabling of in-situ sensing; our goal is to leverage the capabilities

of mobile computing to further enhance and augment such deployments.

Mobile sensing has been a research topic for some years now has applica-

tions in several domains – significant advantages include extended coverage and760

reduced dependency on infrastructures. It has typically been used for data col-

lection in large areas that cannot be blanketed uniformly with sensing devices.

CarTel [17] is a delay-tolerant mobile computing system deployed in cars; it

supports on-board mobile sensing and data uploading through the public net-

work infrastructure and is used for gathering air quality and wireless network765

coverage information in cities. ZebraNet [15, 16] is an energy efficient mobile

sensing network designed for long-term tracking and observation of wild ani-

mals. Due to the sparse distribution and low-energy design of nodes, dedicated

data collectors wander around to collect data from the mobile sensors period-

ically. BikeNet [14] is a sensing platform for mapping cyclists experiences and770

incorporates both planned operation (tasking) and opportunistic operation. Re-

37

cent work on mobile participatory sensing and crowdsourcing has enabled the

creation of high-resolution sensing maps for communities and cities using large

groups of cheap commodity sensors [6–8, 36] [11–13]. Often, in such settings,

the coverage and deployment of sensing capabilities is tied to the availability of775

continuous network connectivity [8–10].

Using mobile devices for ferrying messages and data has been studied in the

context of delay tolerant networks (DTN)[24–28, 37]; and data mules [29, 30] ;

these approaches often assume absence or very limited access to communication

infrastructure. Applications are assumed to be delay tolerant, i.e. meeting tim-780

ing deadlines is not a critical goal and system design typically involves the use of

multi-hop networks [29, 30]. Techniques for proactive and adaptive data trans-

mission or uploading in this setting have been designed [38–48]. Delay tolerance

of applications has also been exploited in the context of mobile crowdsourc-

ing. O2SM (Offline Online Social Media) [38, 39] is a delay tolerant application785

framework that pre-fetches online social media content when connectivity is

available so as to enable efficient offline access to social media streams based

on its likelihood of being viewed. Another example is Piggyback Crowdsens-

ing (PCS) [40, 41], a framework designed to reduce the energy overhead of

smartphone based crowdsensing. Using prior knowledge about user habits and790

CPU/network profiles of applications, PCS determines when to trigger on-board

sensors to minimize energy consumption. In these cases too, when and how to

upload the collected information is not a significant concern.

The above efforts have inspired our approach to enhance IoT deployments

with mobility – where new technologies, solutions and deployment settings have795

brought about a new set of dynamicity challenges. Prior work on IoT system

architectures have considered using mobile nodes (mostly smartphones) to ex-

tend the coverage of sensing capability [2, 7] of in-situ nodes. Other efforts

[49, 50] have also attempted to leverage node mobility to improve the overall

performance and resilience of deployed IoT systems. Our focus is on application800

scenarios where communication infrastructure exists, but maybe non-uniform;

based on our experience, network availability and connectivity are seldom uni-

38

form over space and time, even in highly developed communities and cities.

Connectivity conditions can also be affected by external factors, e.g. disasters,

large public events. We also place emphasis on the timely delivery of data and805

events since the IoT deployments may be used in time-sensitive applications,

e.g. involving public safety. Overall, this places more stringent requirements

on timely delivery of IoT data using the available communication infrastruc-

ture. Upload planning is a critical problem in this setting – this paper focuses

on addressing this issue. In community deployment settings, one can exploit810

planned mobility (e.g using regularity of transit vehicles and community vol-

unteers) for data gathering and upload planning; in such settings, there is a

priori knowledge of communication network availability and mobility paths/-

trajectories. Our findings through measurement studies also provide practical

guidance on how this mobility should be tailored. We stress on the realistic815

“stop–operate–go” mobility pattern to ensure complete data collection. The

two-phase upload planning approach and associated scheduling algorithms and

adaptation policies are based on factors derived from real world measurement

studies. In our work, we also highlight the need for timely data delivery under

non-uniform network settings and show how planned mobility can be utilized820

to realize the dynamic communication needs. In this paper, we hone in on

a specific problem – the upload planning problem in smart community IoT

deployments and propose a two-phase approach to solve the optimization in

community/city settings. We design SCALECycle, a prototype system, to con-

duct measurements in our real community testbeds. Experiments using data825

collected with SCALECycle, show that our two-phase approach using BDOP-

Lyapunov outperforms both the näıve approach and the planned approach, in

complex community settings of different scales with multiple different types of

dynamics.

Our future work will leverage the use of multiple MDCs and multiple access830

networks in a cooperative manner. Currently, we assume that the path plan-

ning phase is done separately a priori, potentially by other planners; hence, we

decouple the two aspects of path and upload planning and focus on details and

39

realistic issues associated with upload scheduling. If multiple MDCs are all given

different paths and work independently with the fixed paths, the proposed tech-835

niques and individual scheduling approaches will work. An interesting direction

of future work is the collaboration of multiple MDCs that enables joint data

collection and upload. Multiple MDCs become handy when the trajectories can

be manipulated or MDCs could be arranged to deviate from their original plans

to capture dynamic events – this brings about multiple questions. Which MDCs840

should have their path/plan modified? Should this be done for each MDC one

at a time or should we design a joint planning mechanism? Should path plan-

ning and upload scheduling for each MDC be conducted in separate phases or

jointly? How can MDCs be made to deviate from their planned and expected

paths as new data collection events arise? In fact, we have addressed similar845

path planning and detour planning problems in previous efforts [51] without

considering data uploading. In future work, we plan to study the interaction

between MDCs (e.g. their collaboration and competition) and its impact on

upload planning and path planning. Integrating a growing number of mobile

devices into a changing and heterogeneous IoT ecosystem requires innovative850

networking approaches as well. New network architectures and protocols to

handle wireless access networks into IoT settings are being designed and devel-

oped [52–54]. Our recent work on multi-network IoT deployments [55] illustrates

the role of upcoming technologies such as SDN in managing the heterogeneous

nature of IoT systems. Our future directions also include incorporating a multi-855

network upload setting to improve the overall efficiency of data collection in

large-scale community deployments, which could be the key to driving future

smart communities worldwide.

Acknowledgement

We thank the ISG and DSM teams for discussion. This project is funded860

under National Science Foundation Award No. CNS 1450768.

40

References

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of Things

for Smart Cities, IEEE Internet of Things Journal 1 (1) (2014) 22–32.

[2] R. Jalali, K. El-Khatib, C. McGregor, Smart city architecture for commu-865

nity level services through the internet of things, in: 2015 18th International

Conference on Intelligence in Next Generation Networks (ICIN), 2015, pp.

108–113.

[3] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Sensing as a

service model for smart cities supported by Internet of Things, Transactions870

on Emerging Telecommunications Technologies 25 (1) (2014) 81–93.

[4] K. Benson, C. Fracchia, G. Wang, Q. Zhu, S. Almomen, J. Cohn, L. D’arcy,

D. Hoffman, M. Makai, J. Stamatakis, N. Venkatasubramanian, SCALE:

Safe community awareness and alerting leveraging the internet of things,

IEEE Communications Magazine 53 (12) (2015) 27–34.875

[5] M. Y. S. Uddin, A. Nelson, K. Benson, G. Wang, Q. Zhu, Q. Han, N. Alhas-

soun, P. Chakravarthi, J. Stamatakis, D. Hoffman, L. Darcy, N. Venkata-

subramanian, The Scale2 Multi-Network Architecture for IoT-Based Re-

silient Communities, in: 2016 IEEE International Conference on Smart

Computing (SMARTCOMP), 2016, pp. 1–8.880

[6] M. D. Kohler, T. H. Heaton, M.-H. Cheng, The Community Seismic Net-

work and Quake-Catcher Network: Enabling structural health monitor-

ing through instrumentation by community participants, in: SPIE Smart

Structures and Materials+ Nondestructive Evaluation and Health Moni-

toring, International Society for Optics and Photonics, 2013, pp. 86923X–885

86923X.

[7] R. W. Clayton, T. Heaton, M. Chandy, A. Krause, M. Kohler, J. Bunn,

R. Guy, M. Olson, M. Faulkner, M. Cheng, others, Community seismic

network, Annals of Geophysics 54 (6).

41

[8] A. Boubrima, W. Bechkit, H. Rivano, Optimal deployment of dense wsn890

for error bounded air pollution mapping, in: International Conference on

Distributed Computing in Sensor Systems (DCOSS) 2016, 2016.

[9] S. Toumpis, L. Tassiulas, Optimal deployment of large wireless sensor net-

works, IEEE Transactions on Information Theory 52 (7) (2006) 2935–2953.

[10] C. Zhu, C. Zheng, L. Shu, G. Han, A survey on coverage and connectiv-895

ity issues in wireless sensor networks, Journal of Network and Computer

Applications 35 (2) (2012) 619–632.

[11] S. Hachem, A. Pathak, V. Issarny, Probabilistic registration for large-scale

mobile participatory sensing, in: 2013 IEEE International Conference on

Pervasive Computing and Communications (PerCom), 2013, pp. 132–140.900

[12] D. Christin, C. Rosskopf, M. Hollick, L. Martucci, S. Kanhere, Incog-

niSense: An anonymity-preserving reputation framework for participatory

sensing applications, in: 2012 IEEE International Conference on Pervasive

Computing and Communications (PerCom), 2012, pp. 135–143.

[13] W. Sun, Q. Li, C.-K. Tham, Wireless deployed and participatory sens-905

ing system for environmental monitoring, in: 2014 Eleventh Annual IEEE

International Conference on Sensing, Communication, and Networking

(SECON), 2014, pp. 158–160.

[14] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G.-S. Ahn,

A. T. Campbell, The BikeNet Mobile Sensing System for Cyclist Expe-910

rience Mapping, in: Proceedings of the 5th International Conference on

Embedded Networked Sensor Systems, SenSys ’07, ACM, New York, NY,

USA, 2007, pp. 87–101.

[15] P. Zhang, C. M. Sadler, S. A. Lyon, M. Martonosi, Hardware Design Expe-

riences in ZebraNet, in: Proceedings of the 2Nd International Conference915

on Embedded Networked Sensor Systems, SenSys ’04, ACM, New York,

NY, USA, 2004, pp. 227–238.

42

[16] T. Liu, C. M. Sadler, P. Zhang, M. Martonosi, Implementing Software on

Resource-constrained Mobile Sensors: Experiences with Impala and Ze-

braNet, in: Proceedings of the 2Nd International Conference on Mobile920

Systems, Applications, and Services, MobiSys ’04, ACM, New York, NY,

USA, 2004, pp. 256–269.

[17] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih,

H. Balakrishnan, S. Madden, CarTel: A Distributed Mobile Sensor Com-

puting System, in: Proceedings of the 4th International Conference on925

Embedded Networked Sensor Systems, SenSys ’06, ACM, New York, NY,

USA, 2006, pp. 125–138.

[18] L. Guo, Q. Han, Reliable data collection from mobile users with high data

rates in wireless sensor networks, in: World of Wireless, Mobile and Multi-

media Networks (WoWMoM), 2012 IEEE International Symposium on a,930

2012, pp. 1–6.

[19] G. Jain, S. Babu, R. Raj, K. Benson, B. Manoj, N. Venkatasubramanian,

On disaster information gathering in a complex shanty town terrain, in:

2014 IEEE Global Humanitarian Technology Conference - South Asia Satel-

lite (GHTC-SAS), 2014, pp. 147–153.935

[20] R. Raj, S. Babu, K. Benson, G. Jain, B. S. Manoj, N. Venkatasubramanian,

Efficient Path Rescheduling of Heterogeneous Mobile Data Collectors for

Dynamic Events in Shanty Town Emergency Response, in: 2015 IEEE

Global Communications Conference (GLOBECOM), IEEE, 2015, pp. 1–7.

[21] B. Xing, S. Mehrotra, N. Venkatasubramanian, Radcast: Enabling reliabil-940

ity guarantees for content dissemination in ad hoc networks, in: INFOCOM

2009, IEEE, IEEE, 2009, pp. 1998–2006.

[22] G. Denker, N. Dutt, S. Mehrotra, M.-O. Stehr, C. Talcott, N. Venkata-

subramanian, Resilient dependable cyber-physical systems: a middleware

perspective, Journal of Internet Services and Applications 3 (1) (2012) 41–945

49.

43

[23] S. Sarma, N. Venkatasubramanian, N. Dutt, Sense-making from distributed

and mobile sensing data: A middleware perspective, in: Proceedings of the

51st Annual Design Automation Conference, ACM, 2014, pp. 1–6.

[24] M. Zhao, Y. Yang, C. Wang, Mobile Data Gathering with Load Balanced950

Clustering and Dual Data Uploading in Wireless Sensor Networks, IEEE

Transactions on Mobile Computing 14 (4) (2015) 770–785.

[25] W. Zhao, M. Ammar, E. Zegura, A Message Ferrying Approach for Data

Delivery in Sparse Mobile Ad Hoc Networks, in: Proceedings of the 5th

ACM International Symposium on Mobile Ad Hoc Networking and Com-955

puting, MobiHoc ’04, ACM, New York, NY, USA, 2004, pp. 187–198.

[26] A. Monfared, M. Ammar, E. Zegura, D. Doria, D. Bruno, Computational

ferrying: Challenges in deploying a Mobile High Performance Computer,

in: World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2015

IEEE 16th International Symposium on a, 2015, pp. 1–6.960

[27] M. M. Bin Tariq, M. Ammar, E. Zegura, Message Ferry Route Design

for Sparse Ad Hoc Networks with Mobile Nodes, in: Proceedings of the

7th ACM International Symposium on Mobile Ad Hoc Networking and

Computing, MobiHoc ’06, ACM, New York, NY, USA, 2006, pp. 37–48.

[28] T. Wang, C. P. Low, The general message ferry route (MFR) problem and965

the An-Improved-Route (AIR) scheme, Computer Networks 56 (4) (2012)

1442–1457.

[29] D. Kim, R. N. Uma, B. H. Abay, W. Wu, W. Wang, A. O. Tokuta, Min-

imum latency multiple data mule trajectory planning in wireless sensor

networks, Mobile Computing, IEEE Transactions on 13 (4) (2014) 838–970

851.

[30] S. Y. Wu, J. S. Liu, Evolutionary path planning of a data mule in wireless

sensor network by using shortcuts, in: 2014 IEEE Congress on Evolutionary

Computation (CEC), 2014, pp. 2708–2715.

44

[31] Q. Zhu, M. Y. S. Uddin, Z. Qin, N. Venkatasubramanian, Upload planning975

for mobile data collection in smart community internet-of-things deploy-

ments, in: Smart Computing (SMARTCOMP), 2016 IEEE International

Conference on, IEEE, 2016, pp. 1–8.

[32] M. J. Neely, Stochastic network optimization with application to commu-

nication and queueing systems, Synthesis Lectures on Communication Net-980

works 3 (1) (2010) 1–211.

[33] Z. Qin, L. Iannario, C. Giannelli, P. Bellavista, G. Denker, N. Venkatasub-

ramanian, MINA: A reflective middleware for managing dynamic multinet-

work environments, 2014, pp. 1–4.

[34] MQTT, http://mqtt.org/.985

[35] QualNet, http://qualnet.com/.

[36] W. Sun, Q. Li, C.-K. Tham, Wireless deployed and participatory sensing

system for environmental monitoring, in: Sensing, Communication, and

Networking (SECON), 2014 Eleventh Annual IEEE International Confer-

ence on, IEEE, 2014, pp. 158–160.990

[37] T. Black, V. Mak, P. Pathirana, S. Nahavandi, Using Autonomous Mobile

Agents for Efficient Data Collection in Sensor Networks, in: Automation

Congress, 2006. WAC ’06. World, 2006, pp. 1–6.

[38] Y. Zhao, N. Do, S.-T. Wang, C.-H. Hsu, N. Venkatasubramanian, O2SM:

Enabling efficient offline access to online social media and social networks,995

in: ACM/IFIP/USENIX International Conference on Distributed Systems

Platforms and Open Distributed Processing, Springer, 2013, pp. 445–465.

[39] N. Do, Y. Zhao, C.-H. Hsu, N. Venkatasubramanian, Crowdsourced mobile

data transfer with delay bound, ACM Transactions on Internet Technology

(TOIT) 16 (4) (2016) 28.1000

45

http://mqtt.org/
http://qualnet.com/

[40] N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding, F. Zhao,

H. Cha, Piggyback CrowdSensing (PCS): Energy Efficient Crowdsourcing

of Mobile Sensor Data by Exploiting Smartphone App Opportunities, in:

Proceedings of the 11th ACM Conference on Embedded Networked Sensor

Systems, SenSys ’13, ACM, New York, NY, USA, 2013, pp. 7:1–7:14.1005

[41] H. Xiong, D. Zhang, G. Chen, L. Wang, V. Gauthier, CrowdTasker: Max-

imizing coverage quality in Piggyback Crowdsensing under budget con-

straint, in: 2015 IEEE International Conference on Pervasive Computing

and Communications (PerCom), 2015, pp. 55–62.

[42] J. Ma, N. Lu, H. Zhang, Pso-based proactive routing in delay tolerant1010

network, in: Cyberspace Technology (CCT 2014), International Conference

on, IET, 2014, pp. 1–4.

[43] C. Raffelsberger, H. Hellwagner, A hybrid manet-dtn routing scheme for

emergency response scenarios, in: Pervasive Computing and Communica-

tions Workshops (PERCOM Workshops), 2013 IEEE International Confer-1015

ence on, IEEE, 2013, pp. 505–510.

[44] R. Wohlers, N. Trigoni, R. Zhang, S. Ellwood, Twinroute: Energy-efficient

data collection in fixed sensor networks with mobile sinks, in: Mobile Data

Management: Systems, Services and Middleware, 2009. MDM’09. Tenth

International Conference on, IEEE, 2009, pp. 192–201.1020

[45] A. Petz, J. Enderle, C. Julien, A Framework for Evaluating DTN Mobility

Models, in: Proceedings of the 2Nd International Conference on Simula-

tion Tools and Techniques, Simutools ’09, ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), ICST,

Brussels, Belgium, Belgium, 2009, pp. 94:1–94:8.1025

[46] Z. Lu, X. Sun, T. La Porta, Cooperative data offloading in opportunistic

mobile networks, in: Computer Communications, IEEE INFOCOM 2016-

The 35th Annual IEEE International Conference on, IEEE, 2016, pp. 1–9.

46

[47] M. Y. S. Uddin, H. Wang, F. Saremi, G.-J. Qi, T. Abdelzaher, T. Huang,

Photonet: a similarity-aware picture delivery service for situation aware-1030

ness, in: Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd, IEEE,

2011, pp. 317–326.

[48] W. Gao, G. Cao, A. Iyengar, M. Srivatsa, Supporting cooperative caching

in disruption tolerant networks, in: Distributed Computing Systems

(ICDCS), 2011 31st International Conference on, IEEE, 2011, pp. 151–161.1035

[49] D. P. Abreu, K. Velasquez, M. Curado, E. Monteiro, A resilient internet of

things architecture for smart cities, Annals of Telecommunications (2016)

1–12.

[50] A. Capponi, C. Fiandrino, C. Franck, U. Sorger, D. Kliazovich, P. Bou-

vry, Assessing performance of internet of things-based mobile crowdsens-1040

ing systems for sensing as a service applications in smart cities, in: 8th

IEEE International Conference on Cloud Computing Technology and Sci-

ence (CloudCom), 2016.

[51] Y. Zhao, C.-C. Liao, T.-Y. Lin, J. Yin, N. Do, C.-H. Hsu, N. Venkatasubra-

manian, Smartsource: A mobile q&a middleware powered by crowdsourc-1045

ing, in: Mobile Data Management (MDM), 2015 16th IEEE International

Conference on, Vol. 1, IEEE, 2015, pp. 145–156.

[52] A. Venkataramani, J. F. Kurose, D. Raychaudhuri, K. Nagaraja, M. Mao,

S. Banerjee, Mobilityfirst: a mobility-centric and trustworthy internet ar-

chitecture, ACM SIGCOMM Computer Communication Review 44 (3)1050

(2014) 74–80.

[53] D. Raychaudhuri, K. Nagaraja, A. Venkataramani, Mobilityfirst: a ro-

bust and trustworthy mobility-centric architecture for the future internet,

ACM SIGMOBILE Mobile Computing and Communications Review 16 (3)

(2012) 2–13.1055

47

[54] S. Li, J. Chen, H. Yu, Y. Zhang, D. Raychaudhuri, R. Ravindran, H. Gao,

L. Dong, G. Wang, H. Liu, MF-IoT: A MobilityFirst-Based Internet of

Things Architecture with Global Reach-Ability and Communication Di-

versity, in: 2016 IEEE First International Conference on Internet-of-Things

Design and Implementation (IoTDI), 2016, pp. 129–140.1060

[55] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, N. Venkatasubramanian,

A software defined networking architecture for the internet-of-things, in:

Network Operations and Management Symposium (NOMS), 2014 IEEE,

IEEE, 2014, pp. 1–9.

[56] R. Zivan, H. Yedidsion, S. Okamoto, R. Glinton, K. Sycara, Distributed1065

constraint optimization for teams of mobile sensing agents, Autonomous

Agents and Multi-Agent Systems 29 (3) (2015) 495–536.

[57] H. Huang, A. V. Savkin, Path planning algorithms for a mobile robot col-

lecting data in a wireless sensor network deployed in a region with obstacles,

in: 2016 35th Chinese Control Conference (CCC), 2016, pp. 8464–8467.1070

[58] D. Gavalas, I. E. Venetis, G. Pantziou, C. Konstantopoulos, An iterated

local search approach for multiple itinerary planning in mobile agent-based

sensor fusion, in: 2015 11th International Conference on Mobile Ad-hoc

and Sensor Networks (MSN), IEEE, 2015, pp. 1–7.

[59] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot):1075

A vision, architectural elements, and future directions, Future generation

computer systems 29 (7) (2013) 1645–1660.

48

Algorithm 1: Balanced Deadline-Opportunity-Priority static planning al-

gorithm for finding a plan λ to maximize Ue({a}, {u}, ve, λ, l)

1 function planBalancedDOP ({a},{u});

Input : Data chunks {a} and upload opportunities {u}

Output: Plan vector j corresponding to plan λ

2 Initialize N ← {a}.size, M ← {u}.size, and j← [−1, . . . ,−1]TN ;

3 W← {a}; // Put all chunks in {a} into W

4 while W is not empty do

5 ai ← Take the chunk with the earliest deadline in W;

6 Initialize S← {}, totalSac← 0, and b← j;

7 loop

8 uj ← Fastest u to upload ai in time, after other planned chunks

9 if uj is not null then

10 bi ← j; W← S + W; j← b; break; // Successfully planned ai

11 else

12 ak ← A planned chunk with least importance level to sacrifice;

13 if ak is not null then

14 totalSac← totalSac + f
(
∆e(ak, {a}, {u}, ve, λ, l)

)
;

15 end

16 if totalSec > p(ai) then

17 uj ← Fastest u to upload ai after other planned chunks;

18 bi ← j; j← b; break; // Too much sacrifice, give up ai

19 else

20 S← {ak}+ S; bk ← −1; W← {ai}+ W; // Sacrificed ak

21 end

22 end

23 end

24 end

25 return j;

49

Table 1: Specifications of small, medium, and large test sets.

Scenario Characteristics Small Medium Large

MDC
Constant Speed V/ms−1 5 a

Est. Conn. Time Tc/s 12

Path Length Exp. E[L]/km 12 24 200

Data

Sites

and

Chunks

Bandwidth Ra/Mbps 12

Total Number N 120 120 1,000

Distance ∆x(a)/m N(90, 202) N(180, 602)

Size s/MB U(2, 8) a

Importance Level p {0.3, 0.6, 1.0} b

Deadline Inc. ∆d/s U(−40, 200)

Oppor-

tunities

Total Number M 3–30 a 4–40 a 10–200 a

Distance ∆x(u)/m U(0, 2E[L]/M) a

Bandwidth re/Mbps N(4, 22) c

a Subject to change if this parameter is chosen as an independent variable.

b Importance level is chosen from this set with probabilities 0.6, 0.3, 0.1, respectively.

c The minimum valid bandwidth is 200 Kbps, and the same to other test cases.

50

	Motivation and Approach
	Problem Description
	The Two-Phase Proactive Approach

	Upload Planning for Mobile Data Collection
	Assumptions
	Terms and Notations
	Utility of Data Chunk Delivery
	Problem Formulation—the Upload Planning Problem
	Proof of Computational Complexity
	Estimation of Overall Utility

	Algorithms/Policies for Upload Planning
	Static Planning Algorithms
	Genetic Algorithm
	Balanced Deadline-Opportunity-Priority

	Dynamic Adaptation Policies
	Strict Static Plan
	Strict Timeline
	Adaptation Using Lyapunov Control Strategy

	Prototype Platform and Testbed
	The SCALECycle Mobile Sensing Platform
	Initial Measurements on Real Testbeds

	Performance Evaluation and Results
	Experimental Environments and Simulation Setup
	Performance Evaluation Metrics
	Weighted Overall Utility (WOU)
	Fraction of Important Data Chunks Uploaded In Time
	Time Consumption to Complete All Data Collection

	Simulation Results
	Basic Comparisons and Effect of Network Availability
	Effect of Data Heterogeneity
	Effect of Data Dynamics
	Effect of Mobility Dynamics
	Scalability

	Related Work and Conclusion

